Dislocation sources and slip band nucleation from indents on silicon wafers

2010 ◽  
Vol 43 (5) ◽  
pp. 1036-1039 ◽  
Author(s):  
J. Wittge ◽  
A. N. Danilewsky ◽  
D. Allen ◽  
P. McNally ◽  
Z. Li ◽  
...  

The nucleation of dislocations at controlled indents in silicon during rapid thermal annealing has been studied byin situX-ray diffraction imaging (topography). Concentric loops extending over pairs of inclined {111} planes were formed, the velocities of the inclined and parallel segments being almost equal. Following loss of the screw segment from the wafer, the velocity of the inclined segments almost doubled, owing to removal of the line tension of the screw segments. The loops acted as obstacles to slip band propagation.

1996 ◽  
Vol 441 ◽  
Author(s):  
C. Cabral ◽  
L. A. Clevenger ◽  
J. M. E. Harper ◽  
R. A. Roy ◽  
K. L. Saenger ◽  
...  

AbstractWe demonstrate that the addition of a molybdenum interlayer between titanium and silicon enhances the formation of C54 TiSi2, without bypassing the formation of the C49 TiSi2 phase. In situ x-ray diffraction analysis during rapid thermal annealing, at a rate of 3 °C/s, was used to study the phase formation sequence of TiSi2 starting from a blanket bilayer of Ti on Mo on a polycrystalline Si substrate. It was shown, as in the case without the Mo layer, that the C49 TiSi2 phase forms first, followed by the C54 TiSi2 phase. The results were similar for undoped or arsenic, boron, and phosphorous doped polycrystalline silicon substrates. The temperature range over which the C49 phase is stable is reduced, on average, by 80 °C. The lower end of the range (appearance of C49) is increased by approximately 60 °C and the upper end of the range (disappearance of C49) is decreased by about 20 0C. The orientation of the C49 phase differs in that both the C49(131) and C49(060) orientations are observed, compared to the case without the Mo layer where only the C49(131) orientation is observed.


1995 ◽  
Vol 10 (9) ◽  
pp. 2355-2359 ◽  
Author(s):  
L.A. Clevenger ◽  
R.A. Roy ◽  
C. Cabral ◽  
K.L. Saenger ◽  
S. Brauer ◽  
...  

We demonstrate the use of a synchrotron radiation source for in situ x-ray diffraction analysis during rapid thermal annealing (RTA) of 0.35 μm Salicide (self-aligned silicide) and 0.4 μm Polycide (silicided polysilicon) TiSi2 Complementary Metal Oxide Semiconductor (CMOS) gate structures. It is shown that the transformation from the C49 to C54 phase of TiSi2 occurs at higher temperatures in submicron gate structures than in unpatterned blanket films. In addition, the C54 that forms in submicron structures is (040) oriented, while the C54 that forms in unpatterned Salicide films is randomly oriented. Although the preferred oreintation of the initial C49 phase was different in the Salicide and Polycide gate structures, the final orientation of the C54 phase formed was the same. An incomplete conversion of C49 into C54-TiSi2 during the RTA of Polycide gate structures was observed and is attributed to the retarding effects of phosphorus on the transition.


1994 ◽  
Vol 375 ◽  
Author(s):  
C. Cabral ◽  
L. A. Clevenger ◽  
G. B. Stephenson ◽  
S. Brauer ◽  
G. Morales ◽  
...  

AbstractIt has been demonstrated, using synchrotron radiation, that at rapid thermal annealing rates (3°C/s) the formation of CoSi2 shifts to higher temperatures when a thin Ti interlayer is placed between Co and polycrystalline Si. It has also been shown that the Ti interlayer reduces the temperature range between the start of CoSi formation and CoSi2 formation (i.e. the range over which CoSi is present). 13 nm of Co deposited by physical vapor deposition on polycrystalline Si with and without either a 2 nm or 3.4 nm interlayer of Ti was analyzed in-situ by monitoring x-ray diffraction (XRD) peak intensity as a function of temperature using monochromatic radiation from a synchrotron beam line and by monitoring resistivity as a function of temperature in a rapid thermal annealing (RTA) system. The XRD analysis indicates that the phase formation proceeds from CoSi to CoSi2 in a temperature range that decreases from about 200°C to 140°C to 115°C with pure Co, Co/2 nm Ti and Co/3.4 nm Ti films respectively. The onset of the CoSi formation increases by about 135°C and 160° for Co/ 2 nm Ti and Co/3.4 nm Ti compared to pure Co. The CoSi temperature range decreases from about 75°C in pure Co to less than 50°C in Co/Ti. In-situ RTA resistance along with in-situ XRD analysis indicates that the onset formation temperatures for CoSi are about 440°C, 575°C and 600°C and the temperatures for the completion of CoSi2 formation are about 640°C, 715°C and 715°C for Co, Co / 2 nm Ti and Co / 3.4 nm Ti films respectively. The results are consistent with the Ti interlayer acting as a diffusion barrier during the initial stages of the Co-Si reaction.


2011 ◽  
Vol 318 (1) ◽  
pp. 1157-1163 ◽  
Author(s):  
A.N. Danilewsky ◽  
J. Wittge ◽  
A. Croell ◽  
D. Allen ◽  
P. McNally ◽  
...  

1995 ◽  
Vol 402 ◽  
Author(s):  
L. A. Clevenger ◽  
C. Cabral ◽  
R. A. Roy ◽  
C. Lavoie ◽  
R. Viswanathan ◽  
...  

AbstractA detailed in situ study of silicide reactions during rapid thermal annealing of patterned structures was performed to determine the effects of linewidth (0.2 to 1.1 μm), dopants (arsenic, boron or phosphorus) and silicon substrate type (poly-Si or <100>-Si) on the C49 to C54-TiSi2 transformation. A synchrotron x-ray source and a high speed position sensitive detector were used to collect x-ray diffraction patterns of the reacting phases on a millisecond time scale, in situ, during annealing. We demonstrate that most patterned C49-TiSi2 structures (0.2 to 1.1 μm in width, 2 to 4 μm2 in area) will incompletely transform into C54-TiSi2 during rapid thermal annealing. The C49 to C54 transformation ends at about 900°C and further annealing to higher temperatures does not force the remaining C49 to transform into C54. We also observed that the C54 formation temperature increases as the linewidth of the silicide structure decreases. These results are explained by a low density of C54 nuclei in C49 which leads to a one-dimensional growth of C54 grains along the length of the patterned lines. Finally the incorporation of a Mo implant into either poly-Si or <100>-Si before the deposition of titanium is shown to increase the percentage of C49 that transforms into C54 and also to lower the C54 formation temperature.


2013 ◽  
Vol 40 (1) ◽  
pp. 0106003
Author(s):  
王健 Wang Jian ◽  
谢自力 Xie Zili ◽  
张韵 Zhang Yun ◽  
滕龙 Teng Long ◽  
李烨操 Li Yecao ◽  
...  

1983 ◽  
Vol 23 ◽  
Author(s):  
D.L. Kwong ◽  
R. Kwor ◽  
B.Y. Tsaur ◽  
K. Daneshvar

ABSTRACTThe formation of composite TaSi2/n+ Poly-Si silicide films through the use of rapid thermal annealing (RTA) is investigated by x-ray diffraction, four point probe, scanning Auger microprobes (SAM) with ion sputter etching, transmission electron microscopy (TEM), scanning electron microscopy (SEM), and capacitance-voltage (C-V) measurements. 0.2 μm polysilicon is deposited on oxidized Si wafer by LPCVD and doped with phosphorus. A layer of 2200 A TaSix is then co-sputtered on polysilicon samples from separate targets. These as-deposited films are then annealed by RTA in an argon ambient for 1 sec. and 10 sec. at various temperatures. X-ray diffraction and SAM results show the rapid formation of a uniform stoichiometric tantalum disilicide via Si migration from polysilicon. TEM micrographs show simlilar results for samples annealed at 1000°C in furnace for 30 min. or by RTA for 1 sec., exhibiting average grain size greater than 1000 A. Sheet resistance of samples annealed by furnace annealing and RTA are comparable. SEM micrographs indicate that the surface morphology of the RTA-annealed sample is superior to that obtained by furnace annealing. These results show that RTA may offer a practical solution to low-resistivity silicide formation in VLSI circuits.


1996 ◽  
Vol 441 ◽  
Author(s):  
Wen-Jie Qi ◽  
Zhi-Sheng Wang ◽  
Zhi-Guang Gu ◽  
Guo-Ping Ru ◽  
Guo-Bao Jialig ◽  
...  

AbstractThe ion-beam-sputtered polycrystalline SiGe film and its doping properties have been studied. Boron and phosphorus have been doped into the sputtered poly-SiGe film by ion implantation and diffusion. To activate the implanted impurities, both rapid thermal annealing and fiirnace annealing have been used. The electrical measurements show that boron and plhosphorus can be doped into sputtered SiGe films and effectively activated by both ion implantation with post-annealing and diffiision. Hall mobilities as high as 31 cm2/V-s and 20 cm2/V.s have been obtained in B-difflhsed and P-diffused SiGe films, respectively. The x-ray diffraction spectra of the sputtered Sifie filhn show its typical polycrystalline structure with (111), (220) and (311) as the preferential orientations.


2021 ◽  
Vol 28 (2) ◽  
pp. 550-565 ◽  
Author(s):  
David Yang ◽  
Nicholas W. Phillips ◽  
Kay Song ◽  
Ross J. Harder ◽  
Wonsuk Cha ◽  
...  

Focused ion beam (FIB) techniques are commonly used to machine, analyse and image materials at the micro- and nanoscale. However, FIB modifies the integrity of the sample by creating defects that cause lattice distortions. Methods have been developed to reduce FIB-induced strain; however, these protocols need to be evaluated for their effectiveness. Here, non-destructive Bragg coherent X-ray diffraction imaging is used to study the in situ annealing of FIB-milled gold microcrystals. Two non-collinear reflections are simultaneously measured for two different crystals during a single annealing cycle, demonstrating the ability to reliably track the location of multiple Bragg peaks during thermal annealing. The thermal lattice expansion of each crystal is used to calculate the local temperature. This is compared with thermocouple readings, which are shown to be substantially affected by thermal resistance. To evaluate the annealing process, each reflection is analysed by considering facet area evolution, cross-correlation maps of the displacement field and binarized morphology, and average strain plots. The crystal's strain and morphology evolve with increasing temperature, which is likely to be caused by the diffusion of gallium in gold below ∼280°C and the self-diffusion of gold above ∼280°C. The majority of FIB-induced strains are removed by 380–410°C, depending on which reflection is being considered. These observations highlight the importance of measuring multiple reflections to unambiguously interpret material behaviour.


Sign in / Sign up

Export Citation Format

Share Document