Raman water vapour concentration measurements for reduction of false alarms in forest fire detection

Author(s):  
C. Bellecci ◽  
P. Gaudio ◽  
M. Gelfusa ◽  
T. Lo Feudo ◽  
A. Malizia ◽  
...  
2009 ◽  
Vol 41 (4) ◽  
pp. 374-379 ◽  
Author(s):  
C. Bellecci ◽  
L. De Leo ◽  
P. Gaudio ◽  
M. Gelfusa ◽  
T. Lo Feudo ◽  
...  

Author(s):  
Houache Noureddine ◽  
Kechar Bouabdellah

Forest fire disasters have arisen each year due to a number of factors. The main interest of the authorities is to fight against these fires as early as possible with a minimum of damage, by exploiting recent technologies suitable for this field. In this paper, we present the design and the implementation of a forest fire detection system based on the Wireless Multimedia Sensor Networks (WMSN) technology applied to our region (M'sila forest, Oran city - Algeria) using a field experiment testbed with low cost hardware and software. In our previous study, the designed system detects the fire using a mono modal approach (the sensed data was scalar in nature such as the temperature and humidity). In this work, we enhanced this system by collecting, in addition, richer information sources using cameras as data sources (by capturing images) to eliminate the false alarms which present the main weakness of the first system. We call this new system as Multimedia Forest Fire System (M2FS). Field experiments that we have carried out using the testbed under different scenarios by evaluating the image compression, time constraint and energy consumption, allowed us to validate our chosen technology (Arduino mote) for any application (scalar or multimedia), and also revealed the supremacy of the multimodal approach to mitigate efficiently false alarms.


2020 ◽  
Vol 149 ◽  
pp. 1-16 ◽  
Author(s):  
S. Sudhakar ◽  
V. Vijayakumar ◽  
C. Sathiya Kumar ◽  
V. Priya ◽  
Logesh Ravi ◽  
...  

2019 ◽  
Vol 11 (3) ◽  
pp. 271 ◽  
Author(s):  
Eunna Jang ◽  
Yoojin Kang ◽  
Jungho Im ◽  
Dong-Won Lee ◽  
Jongmin Yoon ◽  
...  

Geostationary satellite remote sensing systems are a useful tool for forest fire detection and monitoring because of their high temporal resolution over large areas. In this study, we propose a combined 3-step forest fire detection algorithm (i.e., thresholding, machine learning-based modeling, and post processing) using Himawari-8 geostationary satellite data over South Korea. This threshold-based algorithm filtered the forest fire candidate pixels using adaptive threshold values considering the diurnal cycle and seasonality of forest fires while allowing a high rate of false alarms. The random forest (RF) machine learning model then effectively removed the false alarms from the results of the threshold-based algorithm (overall accuracy ~99.16%, probability of detection (POD) ~93.08%, probability of false detection (POFD) ~0.07%, and 96% reduction of the false alarmed pixels for validation), and the remaining false alarms were removed through post-processing using the forest map. The proposed algorithm was compared to the two existing methods. The proposed algorithm (POD ~ 93%) successfully detected most forest fires, while the others missed many small-scale forest fires (POD ~ 50–60%). More than half of the detected forest fires were detected within 10 min, which is a promising result when the operational real-time monitoring of forest fires using more advanced geostationary satellite sensor data (i.e., with higher spatial and temporal resolutions) is used for rapid response and management of forest fires.


Author(s):  
Jose Guaman'Quiche ◽  
Edwin Guaman-Quinche ◽  
Hernan Torres-Carrion ◽  
Wilman Chamba-Zaragocin ◽  
Franciso Alvarez-Pineda

2021 ◽  
pp. 152808372110142
Author(s):  
Ariana Khakpour ◽  
Michael Gibbons ◽  
Sanjeev Chandra

Porous membranes find natural application in various fields and industries. Water condensation on membranes can block pores, reduce vapour transmissibility, and diminish the porous membranes' performance. This research investigates the rate of water vapour transmission through microporous nylon and nanofibrous Gore-Tex membranes. Testing consisted of placing the membrane at the intersection of two chambers with varied initial humidity conditions. One compartment is initially set to a high ([Formula: see text]water vapour concentration and the other low ([Formula: see text], with changes in humidity recorded as a function of time. The impact of pore blockage was explored by pre-wetting the membranes with water or interposing glycerine onto the membrane pores before testing. Pore blockage was measured using image analysis for the nylon membrane. The mass flow rate of water vapour ( ṁv) diffusing through a porous membrane is proportional to both its area (A) and the difference in vapour concentration across its two faces ([Formula: see text], such that [Formula: see text] where K is defined as the moisture diffusion coefficient. Correlations are presented for the variation of K as a function of [Formula: see text]. Liquid contamination on the porous membrane has been shown to reduce the moisture diffusion rate through the membrane due to pore blockage and the subsequent reduced open area available for vapour diffusion. Water evaporation from the membrane's surface was observed to add to the mass of vapour diffusing through the membrane. A model was developed to predict the effect of membrane wetting on vapour diffusion and showed good agreement with experimental data.


2021 ◽  
Author(s):  
Shujiro Komiya ◽  
Fumiyoshi Kondo ◽  
Heiko Moossen ◽  
Thomas Seifert ◽  
Uwe Schultz ◽  
...  

<p>Commercially available laser-based spectrometers permit continuous field measurements of water vapour (H<sub>2</sub>O) stable isotope compositions, yet continuous observations in the Amazon, a region that significantly influences atmospheric hydrological cycles on regional to global scales, are largely missing. In order to achieve accurate on-site observations in such conditions, these instruments will require regular on-site calibration, including for H<sub>2</sub>O concentration dependence ([H<sub>2</sub>O]-dependence) of isotopic accuracy.</p><p>With the aim of conducting accurate continuous δ<sup>18</sup>O and δ<sup>2</sup>H on-site observation in the Amazon rainforest, we conducted a laboratory experiment to investigate the performance and determine the optimal [H<sub>2</sub>O]-dependence calibration strategy for two commercial cavity-ring down (CRDS) analysers (L1102i and L2130i models, Picarro, Inc., USA), coupled to our custom-built automated calibration unit. We particularly focused on the rarely investigated performance of the instruments at atmospheric H<sub>2</sub>O contents above 35,000 ppm, a value regularly reached at our site.</p><p>The later analyser model (L2130i) had better precision and accuracy of δ<sup>18</sup>O and δ<sup>2</sup>H measurements with a less pronounced [H<sub>2</sub>O]-dependence compared to the older L1102i. The [H<sub>2</sub>O]-dependence calibration uncertainties did not significantly change with calibration intervals from 28 h up to 196 h, suggesting that one [H<sub>2</sub>O]-dependence calibration per week for the L2130i and L1102i analysers is enough. This study shows that with both CRDS analysers, correctly calibrated, we should be able to discriminate natural diel, seasonal and interannual signals of stable water vapour isotopes in a tropical rainforest environment.</p><p> </p>


2014 ◽  
Vol 32 (3) ◽  
pp. 207-222 ◽  
Author(s):  
V. Barabash ◽  
A. Osepian ◽  
P. Dalin

Abstract. Mesospheric water vapour concentration effects on the ion composition and electron density in the lower ionosphere under quiet geophysical conditions were examined. Water vapour is an important compound in the mesosphere and the lower thermosphere that affects ion composition due to hydrogen radical production and consequently modifies the electron number density. Recent lower-ionosphere investigations have primarily concentrated on the geomagnetic disturbance periods. Meanwhile, studies on the electron density under quiet conditions are quite rare. The goal of this study is to contribute to a better understanding of the ionospheric parameter responses to water vapour variability in the quiet lower ionosphere. By applying a numerical D region ion chemistry model, we evaluated efficiencies for the channels forming hydrated cluster ions from the NO+ and O2+ primary ions (i.e. NO+.H2O and O2+.H2O, respectively), and the channel forming H+(H2O)n proton hydrates from water clusters at different altitudes using profiles with low and high water vapour concentrations. Profiles for positive ions, effective recombination coefficients and electrons were modelled for three particular cases using electron density measurements obtained during rocket campaigns. It was found that the water vapour concentration variations in the mesosphere affect the position of both the Cl2+ proton hydrate layer upper border, comprising the NO+(H2O)n and O2+(H2O)n hydrated cluster ions, and the Cl1+ hydrate cluster layer lower border, comprising the H+(H2O)n pure proton hydrates, as well as the numerical cluster densities. The water variations caused large changes in the effective recombination coefficient and electron density between altitudes of 75 and 87 km. However, the effective recombination coefficient, αeff, and electron number density did not respond even to large water vapour concentration variations occurring at other altitudes in the mesosphere. We determined the water vapour concentration upper limit at altitudes between 75 and 87 km, beyond which the water vapour concentration ceases to influence the numerical densities of Cl2+ and Cl1+, the effective recombination coefficient and the electron number density in the summer ionosphere. This water vapour concentration limit corresponds to values found in the H2O-1 profile that was observed in the summer mesosphere by the Upper Atmosphere Research Satellite (UARS). The electron density modelled using the H2O-1 profile agreed well with the electron density measured in the summer ionosphere when the measured profiles did not have sharp gradients. For sharp gradients in electron and positive ion number densities, a water profile that can reproduce the characteristic behaviour of the ionospheric parameters should have an inhomogeneous height distribution of water vapour.


Sign in / Sign up

Export Citation Format

Share Document