scholarly journals Detection and Monitoring of Forest Fires Using Himawari-8 Geostationary Satellite Data in South Korea

2019 ◽  
Vol 11 (3) ◽  
pp. 271 ◽  
Author(s):  
Eunna Jang ◽  
Yoojin Kang ◽  
Jungho Im ◽  
Dong-Won Lee ◽  
Jongmin Yoon ◽  
...  

Geostationary satellite remote sensing systems are a useful tool for forest fire detection and monitoring because of their high temporal resolution over large areas. In this study, we propose a combined 3-step forest fire detection algorithm (i.e., thresholding, machine learning-based modeling, and post processing) using Himawari-8 geostationary satellite data over South Korea. This threshold-based algorithm filtered the forest fire candidate pixels using adaptive threshold values considering the diurnal cycle and seasonality of forest fires while allowing a high rate of false alarms. The random forest (RF) machine learning model then effectively removed the false alarms from the results of the threshold-based algorithm (overall accuracy ~99.16%, probability of detection (POD) ~93.08%, probability of false detection (POFD) ~0.07%, and 96% reduction of the false alarmed pixels for validation), and the remaining false alarms were removed through post-processing using the forest map. The proposed algorithm was compared to the two existing methods. The proposed algorithm (POD ~ 93%) successfully detected most forest fires, while the others missed many small-scale forest fires (POD ~ 50–60%). More than half of the detected forest fires were detected within 10 min, which is a promising result when the operational real-time monitoring of forest fires using more advanced geostationary satellite sensor data (i.e., with higher spatial and temporal resolutions) is used for rapid response and management of forest fires.

2020 ◽  
Vol 149 ◽  
pp. 1-16 ◽  
Author(s):  
S. Sudhakar ◽  
V. Vijayakumar ◽  
C. Sathiya Kumar ◽  
V. Priya ◽  
Logesh Ravi ◽  
...  

2018 ◽  
Vol 10 (12) ◽  
pp. 1992 ◽  
Author(s):  
Zixi Xie ◽  
Weiguo Song ◽  
Rui Ba ◽  
Xiaolian Li ◽  
Long Xia

Two of the main remote sensing data resources for forest fire detection have significant drawbacks: geostationary Earth Observation (EO) satellites have high temporal resolution but low spatial resolution, whereas Polar-orbiting systems have high spatial resolution but low temporal resolution. Therefore, the existing forest fire detection algorithms that are based on a single one of these two systems have only exploited temporal or spatial information independently. There are no approaches yet that have effectively merged spatial and temporal characteristics to detect forest fires. This paper fills this gap by presenting a spatiotemporal contextual model (STCM) that fully exploits geostationary data’s spatial and temporal dimensions based on the data from Himawari-8 Satellite. We used an improved robust fitting algorithm to model each pixel’s diurnal temperature cycles (DTC) in the middle and long infrared bands. For each pixel, a Kalman filter was used to blend the DTC to estimate the true background brightness temperature. Subsequently, we utilized the Otsu method to identify the fire after using an MVC (maximum value month composite of NDVI) threshold to test which areas have enough fuel to support such events. Finally, we used a continuous timeslot test to correct the fire detection results. The proposed algorithm was applied to four fire cases in East Asia and Australia in 2016. A comparison of detection results between MODIS Terra and Aqua active fire products (MOD14 and MYD14) demonstrated that the proposed algorithm from this paper effectively analyzed the spatiotemporal information contained in multi-temporal remotely sensed data. In addition, this new forest fire detection method can lead to higher detection accuracy than the traditional contextual and temporal algorithms. By developing algorithms that are based on AHI measurements to meet the requirement to detect forest fires promptly and accurately, this paper assists both emergency responders and the general public to mitigate the damage of forest fires.


2019 ◽  
Vol 8 (4) ◽  
pp. 9126-9132

As we all know forests are the main source of oxygen and its protection is essential to sustain the human and animal race. Since we all learnt about the necessity of air, yet we lack at taking measures to protect our mother forest. Forest Fires are the main reason for the deforestation and destruction of trees and wildlife. Forest Fires are due to these two ways either by man-made or naturally caused. In either way we have to pay for the loss occurred because we have left with only certain area for the forest. So, we have to take measures to prevent forest fire at its early stage. The main aim of our project is to design and implement an IoT based hardware module that could detect the fire and prevent it by alerting the monitoring stations with an alert message and also provides location to the nearest base station. An automatic message will be sent to the nearest base station in addition to these, it has a 360 degrees rotation camera which helps to provide continuous surveillance. We can rotate the camera in any direction from the base station itself. A buzzer that alarms when the incident is happening and a water motor, this water motor will be on automatically. We can also find location where the incident is taking place with the help of Wi-Fi module. This device helps in identifying the fire at its early stage and helps in the prevention of spread all over the forest.


Author(s):  
Houache Noureddine ◽  
Kechar Bouabdellah

Forest fire disasters have arisen each year due to a number of factors. The main interest of the authorities is to fight against these fires as early as possible with a minimum of damage, by exploiting recent technologies suitable for this field. In this paper, we present the design and the implementation of a forest fire detection system based on the Wireless Multimedia Sensor Networks (WMSN) technology applied to our region (M'sila forest, Oran city - Algeria) using a field experiment testbed with low cost hardware and software. In our previous study, the designed system detects the fire using a mono modal approach (the sensed data was scalar in nature such as the temperature and humidity). In this work, we enhanced this system by collecting, in addition, richer information sources using cameras as data sources (by capturing images) to eliminate the false alarms which present the main weakness of the first system. We call this new system as Multimedia Forest Fire System (M2FS). Field experiments that we have carried out using the testbed under different scenarios by evaluating the image compression, time constraint and energy consumption, allowed us to validate our chosen technology (Arduino mote) for any application (scalar or multimedia), and also revealed the supremacy of the multimodal approach to mitigate efficiently false alarms.


Author(s):  
S. H. Park ◽  
W. Park ◽  
H. S. Jung

Forest fires are a major natural disaster that destroys a forest area and a natural environment. In order to minimize the damage caused by the forest fire, it is necessary to know the location and the time of day and continuous monitoring is required until fire is fully put out. We have tried to improve the forest fire detection algorithm by using a method to reduce the variability of surrounding pixels. We focused that forest areas of East Asia, part of the Himawari-8 AHI coverage, are mostly located in mountainous areas. The proposed method was applied to the forest fire detection in Samcheok city, Korea on May 6 to 10, 2017.


Author(s):  
Gopalakrishnan G ◽  
Arul Mozhi Varman S ◽  
Dinessh T C ◽  
Divayarupa S ◽  
Benazir Begam R

Over the past years, a radical change in Earth’s temperature has been recorded. It has caused global warming and severe changes in climatic conditions. Naturally, this has resulted in many natural disasters. Forest fire is one such calamity that harms the environment to a great extent. The traditional methods of controlling and suppressing the fires are ineffective as the fires spread too rapidly if it is not contained at the initial stage. Hence this paper proposes a system that aims to automatically detect forest fires and suppress them. This system will suppress and contain the forest fires long enough for the firefighters to arrive.


Forests ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 217
Author(s):  
Renjie Xu ◽  
Haifeng Lin ◽  
Kangjie Lu ◽  
Lin Cao ◽  
Yunfei Liu

Due to the various shapes, textures, and colors of fires, forest fire detection is a challenging task. The traditional image processing method relies heavily on manmade features, which is not universally applicable to all forest scenarios. In order to solve this problem, the deep learning technology is applied to learn and extract features of forest fires adaptively. However, the limited learning and perception ability of individual learners is not sufficient to make them perform well in complex tasks. Furthermore, learners tend to focus too much on local information, namely ground truth, but ignore global information, which may lead to false positives. In this paper, a novel ensemble learning method is proposed to detect forest fires in different scenarios. Firstly, two individual learners Yolov5 and EfficientDet are integrated to accomplish fire detection process. Secondly, another individual learner EfficientNet is responsible for learning global information to avoid false positives. Finally, detection results are made based on the decisions of three learners. Experiments on our dataset show that the proposed method improves detection performance by 2.5% to 10.9%, and decreases false positives by 51.3%, without any extra latency.


The forest fires are alone not a threat to the environment but this add on multiple factors which are threat to the environment few examples are decreasing of ground water level, landslides, global warming. These are dangerous for the animal species and few vulnerable species. In recent years few a case has been heard of forest fires in Amazon, California which damaged the flora and fauna. Scientist have also predicted that by end of twentieth century the average temperature of earth will rise by 4.4 degree Celsius. The forest fire detection will give strength to the disaster response capacity. Environmental parameters such as forest temperature and humidity can be tracked in real time. From the information gathered by the system, wildfire fighting or fire prevention decisions can be taken as quickly as possible by the respective fire departments.


Sign in / Sign up

Export Citation Format

Share Document