Investigation of a Fabry-Perot-based optical filter for broadband multichannel communication systems

2009 ◽  
Author(s):  
Jinrong Zhang ◽  
Yubin Guo ◽  
Jiayu Huo ◽  
Gang Wang ◽  
Shuming Zhang
Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 4081
Author(s):  
Suejit Pechprasarn ◽  
Chayanisa Sukkasem ◽  
Phitsini Suvarnaphaet

In our previous work, we have demonstrated that dielectric elastic grating can support Fabry–Perot modes and provide embedded optical interferometry to measure ultrasonic pressure. The Fabry–Perot modes inside the grating provide an enhancement in sensitivity and figure of merit compared to thin film-based Fabry–Perot structures. Here, in this paper, we propose a theoretical framework to explain that the elastic grating also supports dielectric waveguide grating mode, in which optical grating parameters control the excitation of the two modes. The optical properties of the two modes, including coupling conditions and loss mechanisms, are discussed. The proposed grating has the grating period in micron scale, which is shorter than the wavelength of the incident ultrasound leading to an ultrasonic scattering. The gap regions in the grating allow the elastic grating thickness to be compressed by the incident ultrasound and coupled to a surface acoustic wave mode. The thickness compression can be measured using an embedded interferometer through one of the optical guided modes. The dielectric waveguide grating is a narrow bandpass optical filter enabling an ultrasensitive mode to sense changes in optical displacement. This enhancement in mechanical and optical properties gives rise to a broader detectable pressure range and figure of merit in ultrasonic detection; the detectable pressure range and figure of merit can be enhanced by 2.7 times and 23 times, respectively, compared to conventional Fabry–Perot structures.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Basem Aqlan ◽  
Mohamed Himdi ◽  
Hamsakutty Vettikalladi ◽  
Laurent Le-Coq

AbstractA low-cost, compact, and high gain Fabry–Perot cavity (FPC) antenna which operates at 300 GHz is presented. The antenna is fabricated using laser-cutting brass technology. The proposed antenna consists of seven metallic layers; a ground layer, an integrated stepped horn element (three-layers), a coupling layer, a cavity layer, and an aperture-frequency selective surface (FSS) layer. The proposed aperture-FSS function acts as a partially reflective surface, contributing to a directive beam radiation. For verification, the proposed sub-terahertz (THz) FPC antenna prototype was developed, fabricated, and measured. The proposed antenna has a measured reflection coefficient below − 10 dB from 282 to 304 GHz with a bandwidth of 22 GHz. The maximum measured gain observed is 17.7 dBi at 289 GHz, and the gain is higher than 14.4 dBi from 285 to 310 GHz. The measured radiation pattern shows a highly directive pattern with a cross-polarization level below − 25 dB over the whole band in all cut planes, which confirms with the simulation results. The proposed antenna has a compact size, low fabrication cost, high gain, and wide operating bandwidth. The total height of the antenna is 1.24 $${\lambda }_{0}$$ λ 0 ($${\lambda }_{0}$$ λ 0 at the design frequency, 300 GHz) , with a size of 2.6 mm × 2.6 mm. The proposed sub-THz waveguide-fed FPC antenna is suitable for 6G wireless communication systems.


1990 ◽  
Vol 57 (17) ◽  
pp. 1718-1720 ◽  
Author(s):  
J. S. Patel ◽  
M. A. Saifi ◽  
D. W. Berreman ◽  
Chinlon Lin ◽  
N. Andreadakis ◽  
...  

2014 ◽  
Vol 23 (02) ◽  
pp. 1450018 ◽  
Author(s):  
Purnima ◽  
Devendra Mohan

In the present frame of work, optical bistability using a Fabry–Perot (FP) cavity containing 4-dicyanomethylene-2-methyl-6-p-dimethylaminostyryl-4H-pyran (DCM) dye entrapped in poly-methylmethacrylate (PMMA) matrix is experimentally investigated. Optical nonlinear behavior of solid-state samples is studied using a single-mode Q-switched nanosecond Nd:YAG laser operating at 532 nm. Various optical nonlinear parameters such as nonlinear refractive index (n2) and third-order susceptibility (χ3) of the material are numerically estimated from bistability loops. The origin of optically bistable behavior is attributed to photoisomerization-assisted nonlinear refraction phenomenon. It is observed that nonlinear refraction dominates over nonlinear absorption in giving rise to the optical bistability. The study shows that DCM dye entrapped in solid-state matrices are promising candidate for polymer-based optical switches, data processing, and communication systems.


Computation ◽  
2019 ◽  
Vol 7 (2) ◽  
pp. 30 ◽  
Author(s):  
Dimitra K. Manousou ◽  
Argyris N. Stassinakis ◽  
Emmanuel Syskakis ◽  
Hector E. Nistazakis ◽  
Spiros Gardelis ◽  
...  

Visible Light Communication (VLC) systems use light-emitting diode (LED) technology to provide high-capacity optical links. The advantages they offer, such as the high data rate and the low installation and operational cost, have identified them as a significant solution for modern networks. However, such systems are vulnerable to various exogenous factors, with the background sunlight noise having the greatest impact. In order to reduce the negative influence of the background noise effect, optical filters can be used. In this work, for the first time, a low-cost optical vanadium dioxide (VO2) optical filter has been designed and experimentally implemented based on the requirements of typical and realistic VLC systems in order to significantly increase their performance by reducing the transmittance of background noise. The functionality of the specific filter is investigated by means of its bit error rate (BER) performance estimation, taking into account its experimentally measured characteristics. Numerous results are provided in order to prove the significant performance enhancement of the VLC systems which, as it is shown, reaches almost six orders of magnitude in some cases, using the specific experimental optical filter.


2018 ◽  
Vol 51 (22) ◽  
pp. 225103 ◽  
Author(s):  
Dong Qi ◽  
Xian Wang ◽  
Yongzhi Cheng ◽  
Fu Chen ◽  
Lei Liu ◽  
...  

2012 ◽  
Vol 6-7 ◽  
pp. 194-199
Author(s):  
Zhe Li ◽  
Hua Juan Qi ◽  
Yong Chuan Xiao ◽  
Feng Li Gao

An integrated TOF (Tunable Optical Filter) based on thermo-optic effect in Silicon on insulator (SOI) rib waveguide is designed and simulated. The device is comprised of two high refractivity contrast Si/Air stacks, functioning as high reflectivity of DBRs and separated by a variable refractive index Si F-P cavity. The output characteristics are calculated and simulated based on Transfer Matrix Method (TMM). Wavelength tuning is achieved through thermal modulation of refractive variation of the cavity.As the cavity Si is heated,the refractive index of the cavity increases.When the temperature of cavity Si changes within100°C,the central wavelength gets a continuous 8nm shift from 1550nm to 1558nm, which is right located in the WDM (Wavelength division multiplexing) networks operating at C-band. Moreover, by calculating, the tuning sensitivity is about 0.08nm/°C. Owing to the compact size and excellent characteristics of integration, the proposed component has a promising utilization in spectroscopy and optical communication.


2009 ◽  
Vol 17 (5) ◽  
pp. 3476 ◽  
Author(s):  
M. J. Foster ◽  
R. Bond ◽  
J. Storey ◽  
C. Thwaite ◽  
J. Y. Labandibar ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document