Fabrication of black silicon materials by wet etching and characterization

Author(s):  
Zhengyu Guo ◽  
Zhiming Wu ◽  
Anyuan Zhang ◽  
Jing Jiang ◽  
Guodong Zhao ◽  
...  
Micromachines ◽  
2018 ◽  
Vol 9 (8) ◽  
pp. 385 ◽  
Author(s):  
Xiao Tan ◽  
Zhi Tao ◽  
Mingxing Yu ◽  
Hanxiao Wu ◽  
Haiwang Li

Owing to its extremely low light absorption, black silicon has been widely investigated and reported in recent years, and simultaneously applied to various disciplines. Black silicon is, in general, fabricated on flat surfaces based on the silicon substrate. However, with three normal fabrication methods—plasma dry etching, metal-assisted wet etching, and femtosecond laser pulse etching—black silicon cannot perform easily due to its lowest absorption and thus some studies remained in the laboratory stage. This paper puts forward a novel secondary nanostructured black silicon, which uses the dry-wet hybrid fabrication method to achieve secondary nanostructures. In consideration of the influence of the structure’s size, this paper fabricated different sizes of secondary nanostructured black silicon and compared their absorptions with each other. A total of 0.5% reflectance and 98% absorption efficiency of the pit sample were achieved with a diameter of 117.1 μm and a depth of 72.6 μm. In addition, the variation tendency of the absorption efficiency is not solely monotone increasing or monotone decreasing, but firstly increasing and then decreasing. By using a statistical image processing method, nanostructures with diameters between 20 and 30 nm are the majority and nanostructures with a diameter between 10 and 40 nm account for 81% of the diameters.


2012 ◽  
Vol 33 (12) ◽  
pp. 1357-1361
Author(s):  
邵长金 SHAO Chang-jin ◽  
何静 HE Jing ◽  
刘邦武 LIU Bang-wu ◽  
夏洋 XIA Yang ◽  
李超波 LI Chao-bo

2012 ◽  
Vol 23 (8) ◽  
pp. 1558-1561 ◽  
Author(s):  
Yuanjie Su ◽  
Shibin Li ◽  
Guodong Zhao ◽  
Zhiming Wu ◽  
Yajie Yang ◽  
...  

CLEO: 2014 ◽  
2014 ◽  
Author(s):  
Yan Peng ◽  
Xiangqian Chen ◽  
Yunyan Zhou ◽  
Dan Fang ◽  
Yiming Zhu

2003 ◽  
Vol 762 ◽  
Author(s):  
J. David Cohen

AbstractThis paper first briefly reviews a few of the early studies that established some of the salient features of light-induced degradation in a-Si,Ge:H. In particular, I discuss the fact that both Si and Ge metastable dangling bonds are involved. I then review some of the recent studies carried out by members of my laboratory concerning the details of degradation in the low Ge fraction alloys utilizing the modulated photocurrent method to monitor the individual changes in the Si and Ge deep defects. By relating the metastable creation and annealing behavior of these two types of defects, new insights into the fundamental properties of metastable defects have been obtained for amorphous silicon materials in general. I will conclude with a brief discussion of the microscopic mechanisms that may be responsible.


Author(s):  
Hiroyuki Niino ◽  
Tadatake Sato ◽  
Yoshizo Kawaguchi ◽  
Aiko Narazaki ◽  
Ryozo Kurosaki
Keyword(s):  

Author(s):  
T.W. Lee

Abstract WET ETCHING is an important part of the failure analysis of semiconductor devices. Analysis requires etches for the removal, delineation by decoration or differential etching, and study of defects in layers of various materials. Each lab usually has a collection of favored etch recipes. Some of these etches are available premixed from the fab chemical supply. Some of these etches may be unique, or even proprietary, to your company. Additionally, the lab etch recipe list will usually contain a variety of classical "named etches". These recipes, such as Dash Etch, have persisted over time. Although well-reported in the literature, lab lists may not accurately represent these recipes, or contain complete and accurate instructions for their use. Time seems to have erased the understanding of the purpose of additives such as iodine, in some of these formulas. To identify the best etches and techniques for a failure analysis operations, a targeted literature review of articles and patents was undertaken. It was a surprise to find that much of the work was quite old, and originally done with germanium. Later some of these etches were modified for silicon. Much of this work is still applicable today. Two main etch types were found. One is concerned with the thinning and chemical polishing of silicon. The other type is concerned with identifying defects in silicon. Many of the named etches were found to consist of variations in a specific acid system. The acid system has been well characterized with ternary diagrams and 3-D surfaces. The named etches were plotted on this diagram. The original formulas and applications of the named etches were traced to assure accuracy, so that the results claimed by the original authors, may be reproduced in today's lab. The purpose of this paper is to share the condensed information obtained during this literature search. Graphical data has been corrected for modem dimensions. Selectivities have been located and discussed. The contents of more than 25 named etches were spreadsheeted. It was concluded that the best approach to delineation is a two-step etch, using uncomplicated and well-characterized standard formulas. The first step uses a decoration or differential etch technique to define the junctions. Formulations for effective decoration etches were found to be surprisingly simple. The second step uses a selective etch to define the various interconnections and dielectric layers. Chromium compounds can be completely eliminated from these formulas, to meet environmental concerns. This work, originally consisting of 30 pages with 106 references, has been condensed to conform with the formatting requirements of this publication.


Author(s):  
Tomokazu Nakai

Abstract Currently many methods are available to obtain a junction profile of semiconductor devices, but the conventional methods have drawbacks, and they could be obstacles for junction profile analysis. This paper introduces an anodic wet etching-based two-dimensional junction profiling method, which is practical, efficient, and reliable for failure analysis and electrical characteristics evaluation.


2010 ◽  
Author(s):  
Fred Semendy ◽  
Patrick Taylor ◽  
Gregory Meissner ◽  
Priyalal Wijewarnasuriya

Sign in / Sign up

Export Citation Format

Share Document