Axial component of the magnetic field produced by a straight solenoid: Application of the solid angle concept

2019 ◽  
Vol 87 (6) ◽  
pp. 449-451
Author(s):  
Fulin Zuo
2012 ◽  
Vol 516-517 ◽  
pp. 1791-1797 ◽  
Author(s):  
Mohmmad Al Dweikat ◽  
Yu Long Huang ◽  
Xiao Lin Shen ◽  
Wei Dong Liu

DC Vacuum Circuit Breakers based arc control has been a major topic in the last few decades. Understanding vacuum arc (VA) gives the ability to improve vacuum circuit breakers capacity. In this paper, the interaction of a DC vacuum arc with a combined Axial-Radial magnetic field was investigated. The proposed system contains an external coil to produce axial magnetic field (AMF) across the vacuum chamber. The vacuum interrupter (VI) contacts were assumed to be untreated radial magnetic field (RMF) contacts. For this purpose, Finite Element Method (FEM) based Multiphysics simulation of the immerging magnetic field influence on the VA is presented. The simulation shown the ability of the presented system to deflect high DC vacuum arc, also reveals that the vacuum arc interruption capability increases with the rise of the axial component of the magnetic field. Simulation results shown that this method can be applied to improve the interruption capability of the VI.


2020 ◽  
Vol 35 (34n35) ◽  
pp. 2044021
Author(s):  
Ivan Koop

In this paper, we present two options of the toroid magnetic spectrometer dedicated to measure the energy and the polar and the azimuthal angles of the scattered from the ion’s nuclear electrons in the future electron-ion collider DERICA at JINR. These options differ by the opposite sign of the magnetic field. In one of the options, the toroid magnetic field bends electrons towards the collision line, while in the option with the inverted field a bent is done outwards from the beam axis. We show that the last case provides much larger useful fraction of a solid angle for detection of the scattered electrons. The momentum resolution of such a spectrometer is estimated.


Geophysics ◽  
1999 ◽  
Vol 64 (1) ◽  
pp. 70-74 ◽  
Author(s):  
D. Guptasarma ◽  
B. Singh

The magnetic field at any point outside a uniformly magnetized polyhedron of arbitrary shape is obtained by adding the fields resulting from the effective free magnetic poles on each of the polygonal surfaces of the polyhedron. For each polygonal surface, the components of the field at the point of observation are expressed in terms of new line integrals around the edges of the polygon and the solid angle subtended by the polygon at the point of observation. The line integrals are standard elementary forms. This new approach makes the numerical evaluation of the magnetic fields for such models much simpler and faster than previously published methods.


2021 ◽  
Author(s):  
Naïs Fargette ◽  
Benoit Lavraud ◽  
Alexis Rouillard ◽  
Victor Réville ◽  
Tai Phan ◽  
...  

<p>Parker Solar Probe data below 0.3 AU have revealed a near-Sun magnetic field dominated by Alfvénic structures that display back and forth reversals of the radial magnetic field. They are called magnetic switchbacks, they display no electron strahl variation consistent with magnetic field foldings within the same magnetic sector, and are associated with velocity spikes during an otherwise calmer background. They are thought to originate either at the photosphere through magnetic reconnection processes, or higher up in the corona and solar wind through turbulent processes.</p><p>In this work, we analyze the spatial and temporal characteristic scales of these magnetic switchbacks. We define switchbacks as a deviation from the parker spiral direction and detect them automatically through perihelia encounters 1 to 6. We analyze the solid angle between the magnetic field and the parker spiral both over time and space. We perform a fast Fourier transformation to the obtained angle and find a periodical spatial variation with scales consistent with solar granulation. This suggests that switchbacks form near the photosphere and may be caused, or at least modulated, by solar convection.</p>


Author(s):  
P. S. Farago

SynopsisIn a crossed static homogeneous electric and magnetic field charged particles describing trochoidal orbits in a plane perpendicular to the direction of the magnetic field are focused, but a beam emitted by a point source in a finite solid angle spreads out indefinitely in the direction parallel to the magnetic field. The essential characteristics of trochoidal orbits can be preserved if the superimposed magnetic and electric fields are two-dimensional and orthogonal, such as derived from a vector potential, say, Ax = A(y, z), Av = Az = O, and a scalar potential Ф(y, z)= const. A(y, z). The focusing properties of such a field combination depend on the distribution of the magnetic field only. Following some general considerations, specific examples of double focusing field distributions are given, and the electron motion in one of them is treated in detail.


1985 ◽  
Vol 33 (2) ◽  
pp. 171-182 ◽  
Author(s):  
E. Infeld

The Zakharov-Kuznetsov equation describing Korteweg–de Vries waves and solitons in a strong, uniform magnetic field is rederived taking space stretching to be isotropic. This equation is then used to investigate nonlinear waves and solitons for long-wave instabilities. A solid angle of instability develops around the plane perpendicular to the magnetic field. For weakly nonlinear waves this angle is very narrow: widening as the amplitude of the nonlinear wave is increased. The soliton wave is unstable for all directions other than parallel to the field. Previous results of other authors, limited to solitons and perpendicular propagation are recovered. Calculations are illustrated by polar diagrams for the perturbations. Some broader implications are pointed out.


2015 ◽  
Vol 61 (2) ◽  
pp. 205-210 ◽  
Author(s):  
Bartłomiej Garda ◽  
Zbigniew Galias

Abstract Magnetic field is usually generated using magnets realized as a set of simple coils. In general, those magnets generate magnetic field with nonzero components in all directions. Usually during the design process only one component of the magnetic field is taken into account, and in the optimisation procedure the currents and positions of simple coils are found to minimize the error between the axial component of the magnetic field and the required magnetic field in the ROI. In this work, it is shown that if the high quality homogeneous magnetic field is generated then indeed one may neglect non-axial components. On the other hand, if the obtained magnetic field is not homogeneous either due to design requirements of too restrictive constrains, then all other components may severely deteriorate the quality of the magnetic field. In the second part of the paper, we show how to design a 3D transversal coil system to solve problems which are intractable in the 1D case.


Sign in / Sign up

Export Citation Format

Share Document