scholarly journals Landau levels, edge states, and gauge choice in 2D quantum dots

2020 ◽  
Vol 88 (11) ◽  
pp. 986-1005
Author(s):  
Asadullah Bhuiyan ◽  
Frank Marsiglio
1995 ◽  
Vol 10 (10) ◽  
pp. 1315-1322 ◽  
Author(s):  
A Kristensen ◽  
C J Kennedy ◽  
P E Lindelof ◽  
M Persson

MRS Bulletin ◽  
2001 ◽  
Vol 26 (12) ◽  
pp. 998-1004 ◽  
Author(s):  
Victor I. Klimov ◽  
Moungi G. Bawendi

Semiconductor materials are widely used in both optically and electrically pumped lasers. The use of semiconductor quantum wells (QWs) as optical-gain media has resulted in important advances in laser technology. QWs have a two-dimensional, step-like density of electronic states that is nonzero at the band edge, enabling a higher concentration of carriers to contribute to the band-edge emission and leading to a reduced lasing threshold, improved temperature stability, and a narrower emission line. A further enhancement in the density of the band-edge states and an associated reduction in the lasing threshold are in principle possible using quantum wires and quantum dots (QDs), in which the confinement is in two and three dimensions, respectively. In very small dots, the spacing of the electronic states is much greater than the available thermal energy (strong confinement), inhibiting thermal depopulation of the lowest electronic states. This effect should result in a lasing threshold that is temperatureinsensitive at an excitation level of only 1 electron-hole (e-h) pair per dot on average. Additionally, QDs in the strongconfinement regime have an emission wavelength that is a pronounced function of size, adding the advantage of continuous spectral tunability over a wide energy range simply by changing the size of the dots.


2020 ◽  
Vol 9 (1) ◽  
Author(s):  
Omar Jamadi ◽  
Elena Rozas ◽  
Grazia Salerno ◽  
Marijana Milićević ◽  
Tomoki Ozawa ◽  
...  

Abstract We report the realization of a synthetic magnetic field for photons and polaritons in a honeycomb lattice of coupled semiconductor micropillars. A strong synthetic field is induced in both the s and p orbital bands by engineering a uniaxial hopping gradient in the lattice, giving rise to the formation of Landau levels at the Dirac points. We provide direct evidence of the sublattice symmetry breaking of the lowest-order Landau level wavefunction, a distinctive feature of synthetic magnetic fields. Our realization implements helical edge states in the gap between n = 0 and n = ±1 Landau levels, experimentally demonstrating a novel way of engineering propagating edge states in photonic lattices. In light of recent advances in the enhancement of polariton–polariton nonlinearities, the Landau levels reported here are promising for the study of the interplay between pseudomagnetism and interactions in a photonic system.


2016 ◽  
Vol 18 (30) ◽  
pp. 20466-20475 ◽  
Author(s):  
Saurabh Chauhan ◽  
David F. Watson

CdSe QDs transfer electrons from band-edge and surface states to TiO2; core/shell CdSe/ZnS QDs transfer electrons exclusively from band-edge states.


2010 ◽  
Vol 82 (4) ◽  
Author(s):  
M. Wimmer ◽  
A. R. Akhmerov ◽  
F. Guinea

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Alexander V. Poshakinskiy ◽  
Janet Zhong ◽  
Yongguan Ke ◽  
Nikita A. Olekhno ◽  
Chaohong Lee ◽  
...  

AbstractWe reveal the emergence of quantum Hall phases, topological edge states, spectral Landau levels, and Hofstadter butterfly spectra in the two-particle Hilbert space of an array of periodically spaced two-level atoms coupled to a waveguide (waveguide quantum electrodynamics). While the topological edge states of photons require fine-tuned spatial or temporal modulations of the parameters to generate synthetic magnetic fields and the quantum Hall effect, here we demonstrate that a synthetic magnetic field can be self-induced solely by atom–photon interactions. The fact that topological order can be self-induced in what is arguably the simplest possible quantum structure shows the richness of these waveguide quantum electrodynamics systems. We believe that our findings will advance several research disciplines including quantum optics, many-body physics, and nonlinear topological photonics, and that it will set an important reference point for the future experiments on qubit arrays and quantum simulators.


Sign in / Sign up

Export Citation Format

Share Document