Interesting features of the edge states in topological quantum dots

2019 ◽  
Vol 114 ◽  
pp. 113579
Author(s):  
Mi Pang ◽  
Yao Ma ◽  
Xiao Guang Wu
2017 ◽  
Vol 122 (3) ◽  
pp. 034307 ◽  
Author(s):  
Jin-Xian Qu ◽  
Shu-Hui Zhang ◽  
Ding-Yang Liu ◽  
Ping Wang ◽  
Wen Yang

1995 ◽  
Vol 10 (10) ◽  
pp. 1315-1322 ◽  
Author(s):  
A Kristensen ◽  
C J Kennedy ◽  
P E Lindelof ◽  
M Persson

MRS Bulletin ◽  
2001 ◽  
Vol 26 (12) ◽  
pp. 998-1004 ◽  
Author(s):  
Victor I. Klimov ◽  
Moungi G. Bawendi

Semiconductor materials are widely used in both optically and electrically pumped lasers. The use of semiconductor quantum wells (QWs) as optical-gain media has resulted in important advances in laser technology. QWs have a two-dimensional, step-like density of electronic states that is nonzero at the band edge, enabling a higher concentration of carriers to contribute to the band-edge emission and leading to a reduced lasing threshold, improved temperature stability, and a narrower emission line. A further enhancement in the density of the band-edge states and an associated reduction in the lasing threshold are in principle possible using quantum wires and quantum dots (QDs), in which the confinement is in two and three dimensions, respectively. In very small dots, the spacing of the electronic states is much greater than the available thermal energy (strong confinement), inhibiting thermal depopulation of the lowest electronic states. This effect should result in a lasing threshold that is temperatureinsensitive at an excitation level of only 1 electron-hole (e-h) pair per dot on average. Additionally, QDs in the strongconfinement regime have an emission wavelength that is a pronounced function of size, adding the advantage of continuous spectral tunability over a wide energy range simply by changing the size of the dots.


2019 ◽  
Vol 2 (1) ◽  
Author(s):  
Anwei Zhang ◽  
Luojia Wang ◽  
Xianfeng Chen ◽  
Vladislav V. Yakovlev ◽  
Luqi Yuan

AbstractEfficient manipulation of quantum states is a key step towards applications in quantum information, quantum metrology, and nonlinear optics. Recently, atomic arrays have been shown to be a promising system for exploring topological quantum optics and robust control of quantum states, where the inherent nonlinearity is included through long-range hoppings. Here we show that a one-dimensional atomic array in a periodic magnetic field exhibits characteristic properties associated with an effective two-dimensional Hofstadter-butterfly-like model. Our work points out super- and sub-radiant topological edge states localized at the boundaries of the atomic array despite featuring long-range interactions, and opens an avenue of exploring an interacting quantum optical platform with synthetic dimensions.


2021 ◽  
Vol 2015 (1) ◽  
pp. 012127
Author(s):  
A D Rozenblit ◽  
N A Olekhno ◽  
A A Dmitriev ◽  
P S Seregin ◽  
M A Gorlach

Abstract Recent advances in two-particle topological quantum states demonstrate resilience to geometrical imperfections and hold perspectives for robust quantum computations. In this context, particles with fractional quantum statistics, the so-called anyons, attract especial attention. In particular, topological edge states of anyon pairs in one-dimensional chains of coupled cavities were recently predicted to demonstrate localization at one or another edge of the array depending on details of the quantum statistics. In this paper, propose an equivalent electric circuit serving as a classical emulator of such topological states. Detailed numerical studies of resonances in the circuit fully support theoretical predictions, pointing towards future experimental realizations of anyonic states analogs in electrical circuits.


Author(s):  
А.М. Минтаиров

Abstract The size and positions of regions of line localization and the magnetic-field (0–10 T) dependence of the low-temperature (10 K) photoluminescence spectra of single InP/GaInP quantum dots with a number of electrons of N = 5–7 and a Wigner–Seitz radius of ~2.5 are determined using a near-field scanning optical microscope. The formation of composite fermion molecules with a size coinciding with that of localization regions and bond lengths of ~30 and 50 nm, respectively, at a Landau-level filling factor from 1/2 to 2/7 in zero magnetic field is established. At N = 6, the pairing and rearrangement of composite fermions under photoexcitation are found, which offers opportunities for the use of InP/GaInP quantum dots to create a magnetic-field-free topological quantum gate.


2019 ◽  
Vol 5 (7) ◽  
pp. eaav6600 ◽  
Author(s):  
Alexandra Palacio-Morales ◽  
Eric Mascot ◽  
Sagen Cocklin ◽  
Howon Kim ◽  
Stephan Rachel ◽  
...  

Topological superconductors are predicted to harbor exotic boundary states—Majorana zero-energy modes—whose non-Abelian braiding statistics present a new paradigm for the realization of topological quantum computing. Using low-temperature scanning tunneling spectroscopy, here, we report on the direct real-space visualization of chiral Majorana edge states in a monolayer topological superconductor, a prototypical magnet-superconductor hybrid system composed of nanoscale Fe islands of monoatomic height on a Re(0001)-O(2 × 1) surface. In particular, we demonstrate that interface engineering by an atomically thin oxide layer is crucial for driving the hybrid system into a topologically nontrivial state as confirmed by theoretical calculations of the topological invariant, the Chern number.


2016 ◽  
Vol 18 (30) ◽  
pp. 20466-20475 ◽  
Author(s):  
Saurabh Chauhan ◽  
David F. Watson

CdSe QDs transfer electrons from band-edge and surface states to TiO2; core/shell CdSe/ZnS QDs transfer electrons exclusively from band-edge states.


2010 ◽  
Vol 82 (4) ◽  
Author(s):  
M. Wimmer ◽  
A. R. Akhmerov ◽  
F. Guinea

Sign in / Sign up

Export Citation Format

Share Document