scholarly journals Reconstruction of transducer surface velocity distributions from a limited number of acoustic pressure field measurements.

1991 ◽  
Vol 90 (4) ◽  
pp. 2358-2358
Author(s):  
J. R. Blakey
Proceedings ◽  
2020 ◽  
Vol 64 (1) ◽  
pp. 40
Author(s):  
Marc Röthlisberger ◽  
Marcel Schuck ◽  
Laurenz Kulmer ◽  
Johann W. Kolar

Acoustic levitation forces can be used to manipulate small objects and liquid without mechanical contact or contamination. To use acoustic levitation for contactless robotic grippers, automated insertion of objects into the acoustic pressure field is necessary. This work presents analytical models based on which concepts for the controlled insertion of objects are developed. Two prototypes of acoustic grippers are implemented and used to experimentally verify the lifting of objects into the acoustic field. Using standing acoustic waves and by dynamically adjusting the acoustic power, the lifting of high-density objects (>7 g/cm3) from acoustically transparent surfaces is demonstrated. Moreover, a combination of different acoustic traps is used to lift lower-density objects from acoustically reflective surfaces. The provided results open up new possibilities for the implementation of acoustic levitation in robotic grippers, which have the potential to be used in a variety of industrial applications.


2005 ◽  
Vol 12 (2) ◽  
pp. 337-348
Author(s):  
David Natroshvili ◽  
Guram Sadunishvili ◽  
Irine Sigua

Abstract Three-dimensional fluid-solid interaction problems with regard for thermal stresses are considered. An elastic structure is assumed to be a bounded homogeneous isotropic body occupying a domain , where the thermoelastic four dimensional field is defined, while in the unbounded exterior domain there is defined the scalar (acoustic pressure) field. These two fields satisfy the differential equations of steady state oscillations in the corresponding domains along with the transmission conditions of special type on the interface ∂Ω±. We show that uniqueness of solutions strongly depends on the geometry of the boundary ∂Ω±. In particular, we prove that for the corresponding homogeneous transmission problem for a ball there exist infinitely many exceptional values of the oscillation parameter (Jones eigenfrequencies). The corresponding eigenvectors (Jones modes) are written explicitly. On the other hand, we show that if the boundary surface ∂Ω± contains two flat, non-parallel sub-manifolds then there are no Jones eigenfrequencies for such domains.


2001 ◽  
Vol 446 ◽  
pp. 25-65 ◽  
Author(s):  
FABRICE VERON ◽  
W. KENDALL MELVILLE

We present the results of laboratory and field measurements on the stability of wind-driven water surfaces. The laboratory measurements show that when exposed to an increasing wind starting from rest, surface current and wave generation is accompanied by a variety of phenomena that occur over comparable space and time scales. Of particular interest is the generation of small-scale, streamwise vortices, or Langmuir circulations, the clear influence of the circulations on the structure of the growing wave field, and the subsequent transition to turbulence of the surface flow. Following recent work by Melville, Shear & Veron (1998) and Veron & Melville (1999b), we show that the waves that are initially generated by the wind are then strongly modulated by the Langmuir circulations that follow. Direct measurements of the modulated wave variables are qualitatively consistent with geometrical optics and wave action conservation, but quantitative comparison remains elusive. Within the range of parameters of the experiments, both the surface waves and the Langmuir circulations first appear at constant Reynolds numbers of 370 ± 10 and 530 ± 20, respectively, based on the surface velocity and the depth of the laminar shear layer. The onset of the Langmuir circulations leads to a significant increase in the heat transfer across the surface. The field measurements in a boat basin display the same phenomena that are observed in the laboratory. The implications of the measurements for air–sea fluxes, especially heat and gas transfer, and sea-surface temperature, are discussed.


2011 ◽  
Vol 57 (3) ◽  
pp. 411-419 ◽  
Author(s):  
Sina Sodagar ◽  
Farhang Honarvar ◽  
Amin Yaghootian ◽  
Anthony N. Sinclair

Author(s):  
Michael W. Sracic ◽  
Jordan D. Petrie ◽  
Henry A. Moroder ◽  
Ryan T. Koniecko ◽  
Andrew R. Abramczyk ◽  
...  

Acoustic levitation is an advantageous particle positioning mechanism currently employed for applications of x-ray spectroscopy and micro-material manufacturing[1], [2]. By levitating a particle using only acoustic pressure waves, one eliminates the need for a container or other physical structure which may contaminate the specimen. Unfortunately, the pressure field generated by a standing acoustic wave is susceptible to periodic instabilities, and a particle that is levitated in this field tends to vibrate. The amplitude of the vibration is largest in the directions that are orthogonal to the axis in which the acoustic wave is generated. Therefore, by generating additional acoustic waves in each orthogonal axis, the vibration amplitude of the levitated particle is significantly reduced. The authors have shown this phenomenon to be true in a previous study[3]. In this paper, the authors explore the details of the pressure field that is generated with the device. A single degree-of-freedom relationship is developed between the acoustic field pressure, the location of the levitated particle, and the mechanical vibration needed to produce levitation. In order to levitate a 100 micrometer diameter water droplet at 55 kilohertz, the calculations suggest that the transducer must achieve an average surface vibration amplitude of at least 6.43 micrometers. This mechanical vibration must produce a root means-squared pressure amplitude of 933 Pascal. Under these conditions, the particle will levitate approximately 0.4 millimeters below a zero pressure node. To validate the use of the single degree of freedom relationships and to explore the acoustic field for one, two, and three-axis levitation, the authors designed and prototyped an acoustic levitator capable of generating standing waves in three orthogonal directions. Using a simple electrical control circuit, the acoustic wave transducers of each axis can be turned on individually or simultaneously. An experiment was developed to measure the pressure of the acoustic field using a microphone. Preliminary pressure magnitude results were measured for one-axis levitation along the center of the vertical axis of the levitator. The measurements suggest that the theoretical development provides a valid first approximation for the pressure magnitude and required mechanical vibration amplitude.


2012 ◽  
Author(s):  
Francisco I. Valentin ◽  
Silvina Cancelos

While the Bjerknes force is not the only force experienced by a bubble subjected to an acoustic field; studies of bubble translation in non-flowing fluid have identified Bjerknes force as being the most influential. Therefore, Bjerknes force can be used to trap bubbles in predefined locations of maximum and minimum absolute pressure. Specifically challenging is to determine these locations in complex geometries because direct measurement of the acoustic pressure for the whole system is generally not possible. The objective of this research is to numerically predict Bjerknes force effect on bubble migration and accumulation in a complex 3D geometry that includes piezoelectric materials, elastic materials and a fluid media. A numerical solution of the acoustic pressure field was obtained for this geometry, valid in the range of small pressure oscillations. Additionally, using the linearized Rayleigh-Plesset equation, which gives the volumetric oscillations of a bubble subjected to an acoustic field, the Bjerknes force was numerically computed. By knowing the Bjerknes force, a bubble migration pattern upon entering the system was predicted. A CMOS high speed camera was used to experimentally monitor bubble multimode excitation and bubble response to a stationary pressure field validating our numerical results. Results are presented for experiments conducted for a 1mm bubble diameter with acoustic fields ranging from 7 to 10 kHz which correspond to values of the structure and/or the bubble’s resonant frequency.


1983 ◽  
Vol 29 (101) ◽  
pp. 20-27 ◽  
Author(s):  
J. Weertman ◽  
G. E. Birchfield

Abstract The theory of Nye and of Weertman of traveling waves on glaciers is extended to cover the situation where the presence of abundant basal water or increased basal water pressure produces increased sliding of a glacier over its bed. It is found that the ratio of traveling-wave velocity to surface velocity is independent of the amount of water or the basal water pressure. The theoretical value of this ratio, about 4 to 5, agrees with that found in field measurements (the most recent data are from Mer de Glace). It is concluded that field observations of traveling-wave velocities lend strong support to any glacier sliding theory in which the sliding velocity is proportional to the basal shear stress raised to about a second to fifth power and in which the sliding velocity is a function of either or both the amount of water at the bed of a glacier and the pressure within this water.


Materials ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3262 ◽  
Author(s):  
Bruno Lebon ◽  
Iakovos Tzanakis ◽  
Koulis Pericleous ◽  
Dmitry Eskin

The prediction of the acoustic pressure field and associated streaming is of paramount importance to ultrasonic melt processing. Hence, the last decade has witnessed the emergence of various numerical models for predicting acoustic pressures and velocity fields in liquid metals subject to ultrasonic excitation at large amplitudes. This paper summarizes recent research, arguably the state of the art, and suggests best practice guidelines in acoustic cavitation modelling as applied to aluminium melts. We also present the remaining challenges that are to be addressed to pave the way for a reliable and complete working numerical package that can assist in scaling up this promising technology.


Sign in / Sign up

Export Citation Format

Share Document