Rating the impact sound insulation of flooring from its airborne sound reduction index

2012 ◽  
Vol 131 (4) ◽  
pp. 3320-3320
Author(s):  
George Dodd
2015 ◽  
Vol 744-746 ◽  
pp. 1593-1596
Author(s):  
Shang You Wei ◽  
Xian Feng Huang ◽  
Zhi Xiang Zhuang ◽  
Jun Xin Lan

In this paper, a theoretical model to evaluate impact sound transmission through a homogeneous wall is proposed. The model which is based on the Statistical Energy Analysis framework exhibits a system with room-wall-room. For the purpose to explore the mechanism of impact sound transmission through a wall, the impact sound reduction index between two rooms are predicted. Meanwhile, the variation of impact sound reduction index with the walls properties are also taken into account. The results reveal that the density, elastic modulus and thickness of a homogeneous wall have diverse effects on its impact sound insulation and can be chosen adequately to achieve ideal insulation values.It provides an approach to optimize impact sound insulating properties of the walls.


2021 ◽  
Vol 23 (1) ◽  
pp. 77
Author(s):  
Bondan Dwisetyo ◽  
Maharani Ratna Palupi ◽  
Fajar Budi Utomo ◽  
Chery Chaen Putri ◽  
Dodi Rusjadi ◽  
...  

<p>The implementation of laboratory measurement of airborne sound insulation based on ISO and ASTM standards was carried out at SNSU BSN. The aim of this work to realize the measurement of airborne sound insulation for several sample tests, where the procedure of the test is performed according to the updated standard ISO 10140 and ASTM E90. Besides, the single number rating also is determined based on ISO 717-1 and ASTM E413. This measurement has been conducted in the two reverberation rooms using pressure method consist of measuring the sound pressure level, measuring the reverberation time, obtaining the sound reduction index (R) or sound transmission loss (STL), and determination of a single-number ratings of the samples test. From the results, some parameter requirements such as the frequency range and the rounding procedure of R or STL influence the measurement result slightly. Subsequently, the significant difference is obtained for the determination of single number rating in the shifting procedure of the reference curve.</p>


2017 ◽  
Vol 13 (1) ◽  
pp. 20-29 ◽  
Author(s):  
Jiří Teslík ◽  
Radek Fabian ◽  
Barbora Hrubá

AbstractThis paper describes the results of a scientific project focused on determining of the Airborne Sound Insulation of a peripheral non-load bearing wall made of straw bales expressed by Weighted Sound Reduction Index. Weighted Sound Reduction Index was determined by measuring in the certified acoustic laboratory at the Faculty of Mechanical Engineering at Brno University of Technology. The measured structure of the straw wall was modified in combinations with various materials, so the results include a wide range of possible compositions of the wall. The key modification was application of plaster on both sides of the straw bale wall. This construction as is frequently done in actual straw houses. The additional measurements were performed on the straw wall with several variants of additional wall of slab materials. The airborne sound insulation value has been also measured in separate stages of the construction. Thus it is possible to compare and determinate the effect of the single layers on the airborne sound insulation.


2016 ◽  
Vol 835 ◽  
pp. 573-578 ◽  
Author(s):  
Naďa Zdražilová ◽  
Denisa Donová ◽  
Iveta Skotnicova

Acoustic properties of building structures are currently very actual theme with regard to the development of new building and insulating materials, while the methods for estimating the airborne sound reduction index evolve mainly from the second half of the 20th century. For mutual comparison of selected prediction methods and for determination of their suitability it has been provided a calculation of weighted sound reduction index RW [dB] from the input parameters of materials identified by laboratory measurements, calculation of weighted apparent sound reduction index R ́W [dB] and these values were compared with in-situ measurements. The aim of this paper is to determine the most appropriate method to calculate RW [dB] and R ́W [dB] values of lightweight building constructions with regard to their practical applicability, accuracy of estimation and complexity of the calculations.


2011 ◽  
Vol 3 (1) ◽  
pp. 33-40 ◽  
Author(s):  
Marius Mickaitis ◽  
Aleksandras Jagniatinskis ◽  
Boris Fiks

For the purposes of accumulating knowledge of how to comply with requirements for new buildings of obligatory sound class C or enhanced acoustic comfort sound classes A and B (Lithuanian Building Technical regulations STR 2.01.07:2003), the article discusses improvement on airborne sound insulation of partitions between dwellings using additional plasterboard layers. The results of an empirical approach were obtained performing in situ measurements of the partitions of masonry from silicate blocks and expanded-clay concrete blocks. Theoretical calculations without the evaluation of flanking paths are added. The paper looks at the peculiarities of in situ measurement methods and the estimation of the limiting uncertainty of the sound reduction index. It is showed that the values of the in situ measurements of the airborne sound reduction index in accordance with requirements EN ISO 140 and EN ISO 717 series for rooms having volume higher than 50 m3 varies depending on frequency range. It has been stated, that improvement on the weighed airborne sound reduction index in the frequency range from 100 Hz to 3150 Hz depends on the properties of additional layers and on the characteristics of the main constructions. Resonance in the low frequency range arising due to additional layers may reduce the weighed airborne sound reduction index defined in the frequency range from 50 Hz to 3150 Hz. This fact must be taken into account when designing improvement on masonry wall insulation using an additional layer in dwellings.


2013 ◽  
Vol 60 (1) ◽  
Author(s):  
Elwaleed Awad Khidir ◽  
Zambri Harun ◽  
Mohd Jailani Mohd Nor ◽  
Muhamad Razi

This article presents an assessment for the airborne sound insulation provided by single glazed panels. The glazed panels were glass, acrylic and polycarbonate with a thickness of 4 mm. The experiments were conducted in a transmission loss facility consisting of semi anechoic and reverberation chambers. The panels were subjected to airborne sound and the data collected. Glass, acrylic and polycarbonate panel absorb noise most effectively above 500 Hz with the absorption peaks at 1000 Hz. The single number sound reduction index (RW) for glass, polycarbonate and acrylic were 41 dB, 38 dB and 37 dB, respectively. This could be attributed mainly to the material density which is higher for the glass. Keywords: Sound transmission loss; glazing; insulation; weighted index


2013 ◽  
Vol 855 ◽  
pp. 225-228
Author(s):  
Dušan Dlhý

Acoustically speaking, a door as a part of a wall cladding or internal wall partition is usually the weakest element of such a structure [1,2]. The less effective sound insulation properties of a door, in comparison with the main wall structure, results in the fact that the sound reduction index of the door is one of the most important factors affecting the total sound isolation properties of a complex wall.


2014 ◽  
Vol 507 ◽  
pp. 153-156
Author(s):  
Xian Feng Huang ◽  
Quan Shi ◽  
Chen Hui Zhu

The slits on the lightweight partitions have a significant effect on sound insulation which is investigated in this paper. According to Gomperts model for rectangular aperture, the sound reduction index of a wall with slits can be predicted. Two lightweight partitions were selected to analyze their sound reduction index variation with factors such as width, length and location of slits. Results show that these factors affect the sound insulation evidently, especially at high frequencies.


2014 ◽  
Vol 1057 ◽  
pp. 215-222 ◽  
Author(s):  
Dušan Dlhý ◽  
Peter Tomašovič

The structural complexity of a door causes difficulties in the description of its behavior from an acoustical point of view. In many cases, even a small change can cause a big difference in its sound-isolating properties. To determine the acoustical quality of a door, it is important to perform laboratory measurements of the door structure and door frame, the gaps including. A mathematical analysis based on experimental measurements of the sound reduction index of several door constructions was used to determine the acoustical door categories. The equations for calculating the sound reduction index, which were introduced in this paper, should help in the design of a suitable door from an acoustical point of view.


2020 ◽  
Vol 27 (4) ◽  
pp. 367-379
Author(s):  
Joan Lluis Zamora Mestre ◽  
Andrea Niampira

The use of double-sheet enclosures with an intermediate non-ventilated air cavity guarantees a higher airborne sound insulation. The insulation advantages depend on air tightness and the placement of sound absorbing material in the air cavity. The lightweight ventilated façade is a system constructed by the addition of an external light cladding on a heavy single wall to establish an intermediate air cavity. This air cavity can be ventilated under controlled cooling effects, because of Sun’s radiation, and to reduce the risk of dampness caused by rainwater. Owing to this ventilation, acoustic insulation of the lightweight ventilated façade could be less effective. However, some authors indicate that air cavity moderate ventilation does not necessarily lead to a significant reduction in the airborne sound insulation. The authors previously verified this situation in a real building where the existing façade of masonry walls was transformed into a lightweight ventilated façade. The preliminary results indicate the acoustic benefits can be compatible with the hygrothermal benefits derived from controlled ventilation. This article presents the next step, the evaluation of the lightweight ventilated façade acoustic performance under laboratory conditions to revalidate the previous results and refining aspects as the air cavity thickness or the state of openings ventilation. The main results obtained indicate that the airborne sound insulation in laboratory is aligned with the previous results in a real building. Air cavity thickness from 110 to 175 mm and ventilation openings from 0% to 3.84% of the façade area does not lead to a significant reduction in the airborne sound insulation.


Sign in / Sign up

Export Citation Format

Share Document