Visuomotor pursuit tracking accuracy for intraoral tongue movement

2016 ◽  
Vol 140 (4) ◽  
pp. 3224-3224
Author(s):  
Vedad Fazel ◽  
William F. Katz
2020 ◽  
Vol 63 (1) ◽  
pp. 59-73 ◽  
Author(s):  
Panying Rong

Purpose The purpose of this article was to validate a novel acoustic analysis of oral diadochokinesis (DDK) in assessing bulbar motor involvement in amyotrophic lateral sclerosis (ALS). Method An automated acoustic DDK analysis was developed, which filtered out the voice features and extracted the envelope of the acoustic waveform reflecting the temporal pattern of syllable repetitions during an oral DDK task (i.e., repetitions of /tɑ/ at the maximum rate on 1 breath). Cycle-to-cycle temporal variability (cTV) of envelope fluctuations and syllable repetition rate (sylRate) were derived from the envelope and validated against 2 kinematic measures, which are tongue movement jitter (movJitter) and alternating tongue movement rate (AMR) during the DDK task, in 16 individuals with bulbar ALS and 18 healthy controls. After the validation, cTV, sylRate, movJitter, and AMR, along with an established clinical speech measure, that is, speaking rate (SR), were compared in their ability to (a) differentiate individuals with ALS from healthy controls and (b) detect early-stage bulbar declines in ALS. Results cTV and sylRate were significantly correlated with movJitter and AMR, respectively, across individuals with ALS and healthy controls, confirming the validity of the acoustic DDK analysis in extracting the temporal DDK pattern. Among all the acoustic and kinematic DDK measures, cTV showed the highest diagnostic accuracy (i.e., 0.87) with 80% sensitivity and 94% specificity in differentiating individuals with ALS from healthy controls, which outperformed the SR measure. Moreover, cTV showed a large increase during the early disease stage, which preceded the decline of SR. Conclusions This study provided preliminary validation of a novel automated acoustic DDK analysis in extracting a useful measure, namely, cTV, for early detection of bulbar ALS. This analysis overcame a major barrier in the existing acoustic DDK analysis, which is continuous voicing between syllables that interferes with syllable structures. This approach has potential clinical applications as a novel bulbar assessment.


2019 ◽  
Vol 14 (1) ◽  
Author(s):  
Wu-zhou Li ◽  
Zhi-wen Liang ◽  
Yi Cao ◽  
Ting-ting Cao ◽  
Hong Quan ◽  
...  

Abstract Background Tumor motion may compromise the accuracy of liver stereotactic radiotherapy. In order to carry out a precise planning, estimating liver tumor motion during radiotherapy has received a lot of attention. Previous approach may have difficult to deal with image data corrupted by noise. The iterative closest point (ICP) algorithm is widely used for estimating the rigid registration of three-dimensional point sets when these data were dense or corrupted. In the light of this, our study estimated the three-dimensional (3D) rigid motion of liver tumors during stereotactic liver radiotherapy using reconstructed 3D coordinates of fiducials based on the ICP algorithm. Methods Four hundred ninety-five pairs of orthogonal kilovoltage (KV) images from the CyberKnife stereo imaging system for 12 patients were used in this study. For each pair of images, the 3D coordinates of fiducial markers inside the liver were calculated via geometric derivations. The 3D coordinates were used to calculate the real-time translational and rotational motion of liver tumors around three axes via an ICP algorithm. The residual error was also investigated both with and without rotational correction. Results The translational shifts of liver tumors in left-right (LR), anterior-posterior (AP),and superior-inferior (SI) directions were 2.92 ± 1.98 mm, 5.54 ± 3.12 mm, and 16.22 ± 5.86 mm, respectively; the rotational angles in left-right (LR), anterior-posterior (AP), and superior-inferior (SI) directions were 3.95° ± 3.08°, 4.93° ± 2.90°, and 4.09° ± 1.99°, respectively. Rotational correction decreased 3D fiducial displacement from 1.19 ± 0.35 mm to 0.65 ± 0.24 mm (P<0.001). Conclusions The maximum translational movement occurred in the SI direction. Rotational correction decreased fiducial displacements and increased tumor tracking accuracy.


2021 ◽  
Vol 13 (14) ◽  
pp. 2770
Author(s):  
Shengjing Tian ◽  
Xiuping Liu ◽  
Meng Liu ◽  
Yuhao Bian ◽  
Junbin Gao ◽  
...  

Object tracking from LiDAR point clouds, which are always incomplete, sparse, and unstructured, plays a crucial role in urban navigation. Some existing methods utilize a learned similarity network for locating the target, immensely limiting the advancements in tracking accuracy. In this study, we leveraged a powerful target discriminator and an accurate state estimator to robustly track target objects in challenging point cloud scenarios. Considering the complex nature of estimating the state, we extended the traditional Lucas and Kanade (LK) algorithm to 3D point cloud tracking. Specifically, we propose a state estimation subnetwork that aims to learn the incremental warp for updating the coarse target state. Moreover, to obtain a coarse state, we present a simple yet efficient discrimination subnetwork. It can project 3D shapes into a more discriminatory latent space by integrating the global feature into each point-wise feature. Experiments on KITTI and PandaSet datasets showed that compared with the most advanced of other methods, our proposed method can achieve significant improvements—in particular, up to 13.68% on KITTI.


2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Svenja Ipsen ◽  
Sven Böttger ◽  
Holger Schwegmann ◽  
Floris Ernst

AbstractUltrasound (US) imaging, in contrast to other image guidance techniques, offers the distinct advantage of providing volumetric image data in real-time (4D) without using ionizing radiation. The goal of this study was to perform the first quantitative comparison of three different 4D US systems with fast matrix array probes and real-time data streaming regarding their target tracking accuracy and system latency. Sinusoidal motion of varying amplitudes and frequencies was used to simulate breathing motion with a robotic arm and a static US phantom. US volumes and robot positions were acquired online and stored for retrospective analysis. A template matching approach was used for target localization in the US data. Target motion measured in US was compared to the reference trajectory performed by the robot to determine localization accuracy and system latency. Using the robotic setup, all investigated 4D US systems could detect a moving target with sub-millimeter accuracy. However, especially high system latency increased tracking errors substantially and should be compensated with prediction algorithms for respiratory motion compensation.


Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 2236
Author(s):  
Sichun Du ◽  
Qing Deng

Unscented particle filter (UPF) struggles to completely cover the target state space when handling the maneuvering target tracing problem, and the tracking performance can be affected by the low sample diversity and algorithm redundancy. In order to solve this problem, the method of divide-and-conquer sampling is applied to the UPF tracking algorithm. By decomposing the state space, the descending dimension processing of the target maneuver is realized. When dealing with the maneuvering target, particles are sampled separately in each subspace, which directly prevents particles from degeneracy. Experiments and a comparative analysis were carried out to comprehensively analyze the performance of the divide-and-conquer sampling unscented particle filter (DCS-UPF). The simulation result demonstrates that the proposed algorithm can improve the diversity of particles and obtain higher tracking accuracy in less time than the particle swarm algorithm and intelligent adaptive filtering algorithm. This algorithm can be used in complex maneuvering conditions.


2021 ◽  
Vol 11 (7) ◽  
pp. 3257
Author(s):  
Chen-Huan Pi ◽  
Wei-Yuan Ye ◽  
Stone Cheng

In this paper, a novel control strategy is presented for reinforcement learning with disturbance compensation to solve the problem of quadrotor positioning under external disturbance. The proposed control scheme applies a trained neural-network-based reinforcement learning agent to control the quadrotor, and its output is directly mapped to four actuators in an end-to-end manner. The proposed control scheme constructs a disturbance observer to estimate the external forces exerted on the three axes of the quadrotor, such as wind gusts in an outdoor environment. By introducing an interference compensator into the neural network control agent, the tracking accuracy and robustness were significantly increased in indoor and outdoor experiments. The experimental results indicate that the proposed control strategy is highly robust to external disturbances. In the experiments, compensation improved control accuracy and reduced positioning error by 75%. To the best of our knowledge, this study is the first to achieve quadrotor positioning control through low-level reinforcement learning by using a global positioning system in an outdoor environment.


Symmetry ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 266 ◽  
Author(s):  
Yifeng Wang ◽  
Zhijiang Zhang ◽  
Ning Zhang ◽  
Dan Zeng

The one-shot multiple object tracking (MOT) framework has drawn more and more attention in the MOT research community due to its advantage in inference speed. However, the tracking accuracy of current one-shot approaches could lead to an inferior performance compared with their two-stage counterparts. The reasons are two-fold: one is that motion information is often neglected due to the single-image input. The other is that detection and re-identification (ReID) are two different tasks with different focuses. Joining detection and re-identification at the training stage could lead to a suboptimal performance. To alleviate the above limitations, we propose a one-shot network named Motion and Correlation-Multiple Object Tracking (MAC-MOT). MAC-MOT introduces a motion enhance attention module (MEA) and a dual correlation attention module (DCA). MEA performs differences on adjacent feature maps which enhances the motion-related features while suppressing irrelevant information. The DCA module focuses on decoupling the detection task and re-identification task to strike a balance and reduce the competition between these two tasks. Moreover, symmetry is a core design idea in our proposed framework which is reflected in Siamese-based deep learning backbone networks, the input of dual stream images, as well as a dual correlation attention module. Our proposed approach is evaluated on the popular multiple object tracking benchmarks MOT16 and MOT17. We demonstrate that the proposed MAC-MOT can achieve a better performance than the baseline state of the arts (SOTAs).


Sensors ◽  
2021 ◽  
Vol 21 (9) ◽  
pp. 2894
Author(s):  
Minh-Quan Dao ◽  
Vincent Frémont

Multi-Object Tracking (MOT) is an integral part of any autonomous driving pipelines because it produces trajectories of other moving objects in the scene and predicts their future motion. Thanks to the recent advances in 3D object detection enabled by deep learning, track-by-detection has become the dominant paradigm in 3D MOT. In this paradigm, a MOT system is essentially made of an object detector and a data association algorithm which establishes track-to-detection correspondence. While 3D object detection has been actively researched, association algorithms for 3D MOT has settled at bipartite matching formulated as a Linear Assignment Problem (LAP) and solved by the Hungarian algorithm. In this paper, we adapt a two-stage data association method which was successfully applied to image-based tracking to the 3D setting, thus providing an alternative for data association for 3D MOT. Our method outperforms the baseline using one-stage bipartite matching for data association by achieving 0.587 Average Multi-Object Tracking Accuracy (AMOTA) in NuScenes validation set and 0.365 AMOTA (at level 2) in Waymo test set.


Sign in / Sign up

Export Citation Format

Share Document