No Placebo Effect from Carbohydrate Intake during Prolonged Exercise

2009 ◽  
Vol 19 (3) ◽  
pp. 275-284 ◽  
Author(s):  
Carl J. Hulston ◽  
Asker E. Jeukendrup

The purpose of this study was to investigate the possibility of a placebo effect from carbohydrate (CHO) intake during prolonged exercise. Ten endurance-trained male cyclists performed 3 experimental trials consisting of 120 min of steady-state cycling at 61% VO2max followed by a time trial (TT) lasting approximately 60 min. During exercise participants ingested either plain water (WAT), artificially colored and flavored water (PLA), or a 6% carbohydrate-electrolyte solution (CES). PLA and CES were produced with identical color and taste. To investigate the possibility of a placebo effect from CHO intake, participants were told that both flavored solutions contained CHO and that the purpose of the study was to compare CHO drinks with water. Mean power output during TT was 218 ± 22 W in WAT, 219 ± 17 W in PLA, and 242 ± 27 W in CES. Performance times were 66.35 ± 6.15, 65.94 ± 5.56, and 59.69 ± 2.87 min for WAT, PLA, and CES, respectively. Therefore, CES ingestion enhanced TT performance by 11.3% compared with WAT (p < .05) and 10.6% compared with PLA (p < .05), with no difference between PLA and WAT. In conclusion, during a prolonged test of cycling performance, in which participants were not fully informed of the test conditions, there was no placebo effect when participants believed they had ingested CHO. In contrast, the real effect of CHO intake was a 10.6% improvement in TT cycling performance.

2012 ◽  
Vol 112 (1) ◽  
pp. 106-117 ◽  
Author(s):  
Christoph Siebenmann ◽  
Paul Robach ◽  
Robert A. Jacobs ◽  
Peter Rasmussen ◽  
Nikolai Nordsborg ◽  
...  

The combination of living at altitude and training near sea level [live high–train low (LHTL)] may improve performance of endurance athletes. However, to date, no study can rule out a potential placebo effect as at least part of the explanation, especially for performance measures. With the use of a placebo-controlled, double-blinded design, we tested the hypothesis that LHTL-related improvements in endurance performance are mediated through physiological mechanisms and not through a placebo effect. Sixteen endurance cyclists trained for 8 wk at low altitude (<1,200 m). After a 2-wk lead-in period, athletes spent 16 h/day for the following 4 wk in rooms flushed with either normal air (placebo group, n = 6) or normobaric hypoxia, corresponding to an altitude of 3,000 m (LHTL group, n = 10). Physiological investigations were performed twice during the lead-in period, after 3 and 4 wk during the LHTL intervention, and again, 1 and 2 wk after the LHTL intervention. Questionnaires revealed that subjects were unaware of group classification. Weekly training effort was similar between groups. Hb mass, maximal oxygen uptake (VO2) in normoxia, and at a simulated altitude of 2,500 m and mean power output in a simulated, 26.15-km time trial remained unchanged in both groups throughout the study. Exercise economy (i.e., VO2 measured at 200 W) did not change during the LHTL intervention and was never significantly different between groups. In conclusion, 4 wk of LHTL, using 16 h/day of normobaric hypoxia, did not improve endurance performance or any of the measured, associated physiological variables.


2018 ◽  
Vol 13 (3) ◽  
pp. 268-273 ◽  
Author(s):  
Ana B. Peinado ◽  
Nuria Romero-Parra ◽  
Miguel A. Rojo-Tirado ◽  
Rocío Cupeiro ◽  
Javier Butragueño ◽  
...  

Context: While a number of studies have researched road-cycling performance, few have attempted to investigate the physiological response in field conditions. Purpose: To describe the physiological and performance profile of an uphill time trial (TT) frequently used in cycling competitions. Methods: Fourteen elite road cyclists (mean ± SD age 25 ± 6 y, height 174 ± 4.2 cm, body mass 64.4 ± 6.1 kg, fat mass 7.48% ± 2.82%) performed a graded exercise test to exhaustion to determine maximal parameters. They then completed a field-based uphill TT in a 9.2-km first-category mountain pass with a 7.1% slope. Oxygen uptake (VO2), power output, heart rate (HR), lactate concentration, and perceived-exertion variables were measured throughout the field-based test. Results: During the uphill TT, mean power output and velocity were 302 ± 7 W (4.2 ± 0.1 W/kg) and 18.7 ± 1.6 km/h, respectively. Mean VO2 and HR were 61.6 ± 2.0 mL · kg−1 · min−1 and 178 ± 2 beats/min, respectively. Values were significantly affected by the 1st, 2nd, 6th, and final kilometers (P < .05). Lactate concentration and perceived exertion were 10.87 ± 1.12 mmol/L and 19.1 ± 0.1, respectively, at the end of the test, being significantly different from baseline measures. Conclusion: The studied uphill TT is performed at 90% of maximum HR and VO2 and 70% of maximum power output. To the authors’ knowledge, this is the first study assessing cardiorespiratory parameters combined with measures of performance, perceived exertion, and biochemical variables during a field-based uphill TT in elite cyclists.


2019 ◽  
Vol 14 (1) ◽  
pp. 38-45 ◽  
Author(s):  
Martin J. MacInnis ◽  
Aaron C.Q. Thomas ◽  
Stuart M. Phillips

Purpose: The mean power output (MPO) from a 60-min time trial (TT)—also known as functional threshold power, or FTP—is a standard measure of cycling performance; however, shorter performance tests are desirable to reduce the burden of performance testing. The authors sought to determine the reliability of 4- and 20-min TTs and the extent to which these short TTs were associated with 60-min MPO. Methods: Trained male cyclists (n = 8; age = 25 [5] y;  = 71 [5] mL/kg/min) performed two 4-min TTs, two 20-min TTs, and one 60-min TT. Critical power (CP) was estimated from 4- and 20-min TTs. The typical error of the mean (TEM) and intraclass correlation coefficient (ICC) were calculated to assess reliability, and R2 values were calculated to assess relationships with 60-min MPO. Results: Pairs of 4-min TTs (mean: 417 [SD: 45] W vs 412 [49] W, P = .25; TEM = 8.1 W; ICC = .98), 20-min TTs (342 [36] W vs 344 [33] W, P = .41; TEM = 4.6 W; ICC = .99), and CP estimates (323 [35] W vs 328 [32] W, P = .25; TEM = 6.5; ICC = .98) were reliable. The 4-min MPO (R2 = .95), 20-min MPO (R2 = .92), estimated CP (R2 = .82), and combination of the 4- and 20-min MPO (adjusted R2 = .98) were strongly associated with the 60-min MPO (309 [26] W). Conclusion: The 4- and 20-min TTs appear useful for assessing performance in trained, if not elite, cyclists.


2019 ◽  
Vol 14 (6) ◽  
pp. 727-732
Author(s):  
Naroa Etxebarria ◽  
Megan L. Ross ◽  
Brad Clark ◽  
Louise M. Burke

Purpose: The authors investigated the potential benefit of ingesting 2 mM of quinine (bitter tastant) on a 3000-m cycling time-trial (TT) performance. Methods: Nine well-trained male cyclists (maximal aerobic power: 386 [38] W) performed a maximal incremental cycling ergometer test, three 3000-m familiarization TTs, and four 3000-m intervention TTs (∼4 min) on consecutive days. The 4 interventions were (1) 25 mL of placebo, (2) a 25-mL sweet solution, and (3) and (4) repeat 25 mL of 2-mM quinine solutions (Bitter1 and Bitter2), 30 s before each trial. Participants self-selected their gears and were only aware of distance covered. Results: Overall mean power output for the full 3000 m was similar for all 4 conditions: placebo, 348 (45) W; sweet, 355 (47) W; Bitter1, 354 (47) W; and Bitter2, 355 (48) W. However, quinine administration in Bitter1 and Bitter2 increased power output during the first kilometer by 15 ± 11 W and 21 ± 10 W (mean ± 90% confidence limits), respectively, over placebo, followed by a decay of 34 ± 32 W during Bitter1 and Bitter2 during the second kilometer. Bitter2 also induced a 11 ± 13-W increase during the first kilometer compared with the sweet condition. Conclusions: Ingesting 2 mM of quinine can improve cycling performance during the first one-third of a 3000-m TT and could be used for sporting events lasting ∼80 s to potentially improve overall performance.


2016 ◽  
Vol 11 (2) ◽  
pp. 164-171 ◽  
Author(s):  
Katherine T. Oberlin-Brown ◽  
Rodney Siegel ◽  
Andrew E. Kilding ◽  
Paul B. Laursen

The oral presence of carbohydrate (CHO) and caffeine (CAF) may independently enhance exercise performance, but their influence on performance during prolonged exercise is less known.Aim:To determine the independent and combined effects of CHO and CAF administered in chewing gum during a cycling time trial (TT) after prolonged exercise.Method:Eleven male cyclists (32.2 ± 7.5 y, 74.3 ± 6.8 kg, 60.2 ± 4.0 mL · kg–1 · min–1 V˙O2peak) performed 4 experimental trials consisting of 90-min constant-load cycling at 80% of their second ventilatory threshold (207 ± 30 W), followed immediately by a 20-km TT. Under double-blinded conditions, cyclists received placebo (PLA), CHO, CAF, or a combined CHO+CAF chewing gum at 0-, 5-, 10-, and 15-km points of the TT.Results:Overall TT performance was similar across experimental and PLA trials (%mean difference ± 90%CL 0.2% ± 2.0%, 0.4% ± 2.2%, 0.1% ± 1.8% for CHO, CAF, and CHO+CAF). Compared with PLA, mean power output tended to be higher in the first 2 quarters of the TT with CHO (1.6% ± 3.1% and 0.8% ± 2.0%) and was substantially improved in the last 2 quarters during CAF and CHO+CAF trials (4.2% ± 3.0% and 2.0% ± 1.8%). There were no differences in average heart rate (ES <0.2) and only small changes in blood glucose (ES 0.2), which were unrelated to performance. Blood lactate was substantially higher post-TT for CAF and CHO+CAF (ES >0.6).Conclusion:After prolonged constant-load cycling, the oral presence of CHO and CAF in chewing gum, independently or in combination, did not improve overall performance but did influence pacing.


2015 ◽  
Vol 10 (5) ◽  
pp. 655-663 ◽  
Author(s):  
Emiel Schulze ◽  
Hein A.M. Daanen ◽  
Koen Levels ◽  
Julia R. Casadio ◽  
Daniel J. Plews ◽  
...  

Purpose:To determine the effect of thermal state and thermal comfort on cycling performance in the heat.Methods:Seven well-trained male triathletes completed 3 performance trials consisting of 60 min cycling at a fixed rating of perceived exertion (14) followed immediately by a 20-km time trial in hot (30°C) and humid (80% relative humidity) conditions. In a randomized order, cyclists either drank ambient-temperature (30°C) fluid ad libitum during exercise (CON), drank ice slurry (−1°C) ad libitum during exercise (ICE), or precooled with iced towels and ice slurry ingestion (15g/kg) before drinking ice slurry ad libitum during exercise (PC+ICE). Power output, rectal temperature, and ratings of thermal comfort were measured.Results:Overall mean power output was possibly higher in ICE (+1.4% ± 1.8% [90% confidence limit]; 0.4 > smallest worthwhile change [SWC]) and likely higher PC+ICE (+2.5% ± 1.9%; 1.5 > SWC) than in CON; however, no substantial differences were shown between PC+ICE and ICE (unclear). Time-trial performance was likely enhanced in ICE compared with CON (+2.4% ± 2.7%; 1.4 > SWC) and PC+ICE (+2.9% ± 3.2%; 1.9 > SWC). Differences in mean rectal temperature during exercise were unclear between trials. Ratings of thermal comfort were likely and very likely lower during exercise in ICE and PC+ICE, respectively, than in CON.Conclusions:While PC+ICE had a stronger effect on mean power output compared with CON than ICE did, the ICE strategy enhanced late-stage time-trial performance the most. Findings suggest that thermal comfort may be as important as thermal state for maximizing performance in the heat.


2000 ◽  
Vol 88 (4) ◽  
pp. 1284-1290 ◽  
Author(s):  
Louise M. Burke ◽  
John A. Hawley ◽  
Elske J. Schabort ◽  
Alan St Clair Gibson ◽  
Iñigo Mujika ◽  
...  

We evaluated the effect of carbohydrate (CHO) loading on cycling performance that was designed to be similar to the demands of competitive road racing. Seven well-trained cyclists performed two 100-km time trials (TTs) on separate occasions, 3 days after either a CHO-loading (9 g CHO ⋅ kg body mass− 1 ⋅ day− 1) or placebo-controlled moderate-CHO diet (6 g CHO ⋅ kg body mass− 1 ⋅ day− 1). A CHO breakfast (2 g CHO/kg body mass) was consumed 2 h before each TT, and a CHO drink (1 g CHO ⋅ kg.body mass− 1 ⋅ h− 1) was consumed during the TTs to optimize CHO availability. The 100-km TT was interspersed with four 4-km and five 1-km sprints. CHO loading significantly increased muscle glycogen concentrations (572 ± 107 vs. 485 ± 128 mmol/kg dry wt for CHO loading and placebo, respectively; P < 0.05). Total muscle glycogen utilization did not differ between trials, nor did time to complete the TTs (147.5 ± 10.0 and 149.1 ± 11.0 min; P = 0.4) or the mean power output during the TTs (259 ± 40 and 253 ± 40 W, P = 0.4). This placebo-controlled study shows that CHO loading did not improve performance of a 100-km cycling TT during which CHO was consumed. By preventing any fall in blood glucose concentration, CHO ingestion during exercise may offset any detrimental effects on performance of lower preexercise muscle and liver glycogen concentrations. Alternatively, part of the reported benefit of CHO loading on subsequent athletic performance could have resulted from a placebo effect.


2015 ◽  
Vol 25 (3) ◽  
pp. 285-292 ◽  
Author(s):  
Michael L. Newell ◽  
Angus M. Hunter ◽  
Claire Lawrence ◽  
Kevin D. Tipton ◽  
Stuart D. R. Galloway

In an investigator-blind, randomized cross-over design, male cyclists (mean± SD) age 34.0 (± 10.2) years, body mass 74.6 (±7.9) kg, stature 178.3 (±8.0) cm, peak power output (PPO) 393 (±36) W, and VO2max 62 (±9) ml·kg−1min−1 training for more than 6 hr/wk for more than 3y (n = 20) completed four experimental trials. Each trial consisted of a 2-hr constant load ride at 95% of lactate threshold (185 ± 25W) then a work-matched time trial task (~30min at 70% of PPO). Three commercially available carbohydrate (CHO) beverages, plus a control (water), were administered during the 2-hr ride providing 0, 20, 39, or 64g·hr−1 of CHO at a fluid intake rate of 1L·hr−1. Performance was assessed by time to complete the time trial task, mean power output sustained, and pacing strategy used. Mean task completion time (min:sec ± SD) for 39g·hr−1 (34:19.5 ± 03:07.1, p = .006) and 64g·hr−1 (34:11.3 ± 03:08.5 p = .004) of CHO were significantly faster than control (37:01.9 ± 05:35.0). The mean percentage improvement from control was −6.1% (95% CI: −11.3 to −1.0) and −6.5% (95% CI: −11.7 to −1.4) in the 39 and 64g·hr−1 trials respectively. The 20g·hr−1 (35:17.6 ± 04:16.3) treatment did not reach statistical significance compared with control (p = .126) despite a mean improvement of −3.7% (95% CI −8.8−1.5%). No further differences between CHO trials were reported. No interaction between CHO dose and pacing strategy occurred. 39 and 64g·hr−1 of CHO were similarly effective at improving endurance cycling performance compared with a 0g·hr−1 control in our trained cyclists.


2019 ◽  
Vol 14 (9) ◽  
pp. 1273-1279 ◽  
Author(s):  
Owen Jeffries ◽  
Mark Waldron ◽  
Stephen D. Patterson ◽  
Brook Galna

Purpose: Regulation of power output during cycling encompasses the integration of internal and external demands to maximize performance. However, relatively little is known about variation in power output in response to the external demands of outdoor cycling. The authors compared the mean power output and the magnitude of power-output variability and structure during a 20-min time trial performed indoors and outdoors. Methods: Twenty male competitive cyclists ( 60.4 [7.1] mL·kg−1·min−1) performed 2 randomized maximal 20-min time-trial tests: outdoors at a cycle-specific racing circuit and indoors on a laboratory-based electromagnetically braked training ergometer, 7 d apart. Power output was sampled at 1 Hz and collected on the same bike equipped with a portable power meter in both tests. Results: Twenty-minute time-trial performance indoor (280 [44] W) was not different from outdoor (284 [41] W) (P = .256), showing a strong correlation (r = .94; P < .001). Within-persons SD was greater outdoors (69 [21] W) than indoors (33 [10] W) (P < .001). Increased variability was observed across all frequencies in data from outdoor cycling compared with indoors (P < .001) except for the very slowest frequency bin (<0.0033 Hz, P = .930). Conclusions: The findings indicate a greater magnitude of variability in power output during cycling outdoors. This suggests that constraints imposed by the external environment lead to moderate- and high-frequency fluctuations in power output. Therefore, indoor testing protocols should be designed to reflect the external demands of cycling outdoors.


2020 ◽  
Vol 15 (7) ◽  
pp. 1005-1011
Author(s):  
Alannah K.A. McKay ◽  
Peter Peeling ◽  
Martyn J. Binnie ◽  
Paul S.R. Goods ◽  
Marc Sim ◽  
...  

Purpose: To assess the efficacy of a topical sodium bicarbonate (0.3 g/kg body weight NaHCO3) application (PR lotion; Amp Human) on blood buffering capacity and performance in recreationally active participants (study A) and moderately trained athletes (study B). Methods: In Study A, 10 participants completed 2 experimental trials: oral NaHCO3 (0.3 g/kg body weight + placebo lotion) or PR lotion (0.9036 g/kg body weight + oral placebo) applied 90 minutes prior to a cycling task to exhaustion (30-s sprints at 120% peak power output with 30-s rest). Capillary blood was collected and analyzed for pH, bicarbonate, and lactate every 10 minutes throughout the 90-minute loading period and postexercise at 5, 10, and 15 minutes. In Study B, 10 cyclists/triathletes completed 2 experimental trials, applying either PR or placebo lotion 30 minutes prior to a cycling performance task (3 × 30-s maximal sprints with 90-s recovery). Capillary blood samples were collected at baseline, preexercise, and postexercise and analyzed as per study A. Results: In Study A, pH and bicarbonate were significantly elevated from baseline after 10 minutes in the oral NaHCO3 condition and throughout recovery compared with no elevation in the PR lotion condition (P < .001). No differences in cycling time occurred between PR lotion (349 [119] s) and oral NaHCO3 (363 [80] s; P = .697). In Study B, no differences in blood parameters, mean power (P = .108), or peak power (P = .448) were observed between conditions. Conclusions: PR lotion was ineffective in altering blood buffering capacity or enhancing performance in either trained or untrained individuals.


Sign in / Sign up

Export Citation Format

Share Document