scholarly journals Acute Postexercise Effects of Concentric and Eccentric Exercise on Glucose Tolerance

Author(s):  
Matthew David Cook ◽  
Stephen David Myers ◽  
John Stephen Michael Kelly ◽  
Mark Elisabeth Theodorus Willems

Impaired glucose tolerance was shown to be present 48 hr following muscle-damaging eccentric exercise. We examined the acute effect of concentric and muscle-damaging eccentric exercise, matched for intensity, on the responses to a 2-hr 75-g oral glucose tolerance test (OGTT). Ten men (27 ± 9 years, 178 ± 7 cm, 75 ± 11 kg, VO2max: 52.3 ± 7.3 ml·kg-1·min-1) underwent three OGTTs after an overnight 12 hr fast: rest (control), 40-min (5 × 8-min with 2-min interbout rest) of concentric (level running, 0%, CON) or eccentric exercise (downhill running, –12%, ECC). Running intensity was matched at 60% of maximal metabolic equivalent. Maximal isometric force of m. quadriceps femoris of both legs was measured before and after the running protocols. Downhill running speed was higher (level: 9.7 ± 2.1, downhill: 13.8 ± 3.2 km·hr-1, p < .01). Running protocols had similar VO2max (p = .59), heart rates (p = .20) and respiratory exchange ratio values (p = .74) indicating matched intensity and metabolic demands. Downhill running resulted in higher isometric force deficits (level: 3.0 ± 6.7, downhill: 17.1 ± 7.3%, p < .01). During OGTTs, area-under-the-curve for plasma glucose (control: 724 ± 97, CON: 710 ± 77, ECC: 726 ± 72 mmol·L-1·120 min, p = .86) and insulin (control: 24995 ± 11229, CON: 23319 ± 10417, ECC: 21842 ± 10171 pmol·L-1·120 min, p = .48), peak glucose (control: 8.1 ± 1.3, CON: 7.7 ± 1.2, ECC: 7.7 ± 1.1 mmol·L-1, p = .63) and peak insulin levels (control: 361 ± 188, CON: 322 ± 179, ECC: 299 ± 152 pmol·L-1, p = .30) were similar. It was concluded that glucose tolerance and the insulin response to an OGTT were not changed immediately by muscle-damaging eccentric exercise.

2015 ◽  
Vol 7 (1) ◽  
pp. 53-58 ◽  
Author(s):  
Kazuhiko Sakaguchi ◽  
Kazuo Takeda ◽  
Mitsuo Maeda ◽  
Wataru Ogawa ◽  
Toshiyuki Sato ◽  
...  

2019 ◽  
Vol 104 (8) ◽  
pp. 3481-3490 ◽  
Author(s):  
Alfonso Galderisi ◽  
Cosimo Giannini ◽  
Michelle Van Name ◽  
Sonia Caprio

Abstract Context The consumption of high-fructose beverages is associated with a higher risk for obesity and diabetes. Fructose can stimulate glucagon-like peptide 1 (GLP-1) secretion in lean adults, in the absence of any anorexic effect. Objective We hypothesized that the ingestion of glucose and fructose may differentially stimulate GLP-1 and insulin response in lean adolescents and adolescents with obesity. Design We studied 14 lean adolescents [four females; 15.9 ± 1.6 years of age; body mass index (BMI), 21.8 ± 2.2 kg/m2] and 23 adolescents with obesity (five females; 15.1 ± 1.6 years of age; BMI, 34.5 ± 4.6 kg/m2). Participants underwent a baseline oral glucose tolerance test to determine their glucose tolerance and estimate insulin sensitivity and β-cell function [oral disposition index (oDIcpep)]. Eligible subjects received, in a double-blind, crossover design, 75 g of glucose or fructose. Plasma was obtained every 10 minutes for 60 minutes for the measures of glucose, insulin, and GLP-1 (radioimmunoassay) and glucose-dependent insulinotropic polypeptide (GIP; ELISA). Incremental glucose and hormone levels were compared between lean individuals and those with obesity by a linear mixed model. The relationship between GLP-1 increment and oDIcpep was evaluated by regression analysis. Results Following the fructose challenge, plasma glucose excursions were similar in both groups, yet the adolescents with obesity exhibited a greater insulin (P &lt; 0.001) and GLP-1 (P &lt; 0.001) increase than did their lean peers. Changes in GIP were similar in both groups. After glucose ingestion, the GLP-1 response (P &lt; 0.001) was higher in the lean group. The GLP-1 increment during 60 minutes from fructose drink was correlated with a lower oDIcpep (r2 = 0.22, P = 0.009). Conclusion Fructose, but not glucose, ingestion elicits a higher GLP-1 and insulin response in adolescents with obesity than in lean adolescents. Fructose consumption may contribute to the hyperinsulinemic phenotype of adolescent obesity through a GLP-1–mediated mechanism.


2020 ◽  
Vol 4 (11) ◽  
Author(s):  
Giulio R Romeo ◽  
Junhee Lee ◽  
Christopher M Mulla ◽  
Youngmin Noh ◽  
Casey Holden ◽  
...  

Abstract Context The identification of adjunct safe, durable, and cost-effective approaches to reduce the progression from prediabetes to type 2 diabetes (T2D) is a clinically relevant, unmet goal. It is unknown whether cinnamon’s glucose-lowering properties can be leveraged in individuals with prediabetes. Objective The objective of this work is to investigate the effects of cinnamon on measures of glucose homeostasis in prediabetes. Design, Setting, Participants, and Intervention This double-blind, placebo-controlled, clinical trial randomly assigned adult individuals meeting any criteria for prediabetes to receive cinnamon 500 mg or placebo thrice daily (n = 27/group). Participants were enrolled and followed at 2 academic centers for 12 weeks. Main Outcome Measures Primary outcome was the between-group difference in fasting plasma glucose (FPG) at 12 weeks from baseline. Secondary end points included the change in 2-hour PG of the oral glucose tolerance test (OGTT), and the change in the PG area under the curve (AUC) derived from the OGTT. Results From a similar baseline, FPG rose after 12 weeks with placebo but remained stable with cinnamon, leading to a mean between-group difference of 5 mg/dL (P &lt; .05). When compared to the respective baseline, cinnamon, but not placebo, resulted in a significant decrease of the AUC PG (P &lt; .001) and of the 2-hour PG of the OGTT (P &lt; .05). There were no serious adverse events in either study group. Conclusions In individuals with prediabetes, 12 weeks of cinnamon supplementation improved FPG and glucose tolerance, with a favorable safety profile. Longer and larger studies should address cinnamon’s effects on the rate of progression from prediabetes to T2D.


1989 ◽  
Vol 35 (7) ◽  
pp. 1482-1485 ◽  
Author(s):  
E A de Leacy ◽  
D M Cowley

Abstract Fifty consecutive pregnant patients referred for a glucose-tolerance test were classified on the basis of increasing (n = 20) or decreasing (n = 28) hematocrit after an oral 75-g glucose load. (The hematocrit did not change in the other two patients.) Patients with increasing hematocrit, a response previously seen in patients with the dumping syndrome, showed significantly flatter increases in glucose concentrations in plasma after the load. The mean decrease in the concentration of phosphate in plasma, measured as an index of glucose uptake by cells, was significantly less (P less than 0.05) 2 h after the load in the group with flatter glucose responses, suggesting that the flat response is ascribable to poor glucose absorption rather than to an exaggerated insulin response. These results indicate that the oral glucose-tolerance test stresses the pancreatic islets differently in different pregnant subjects, owing to individual variations in the gastrointestinal handling of the glucose load. Consequently, patients may give a "normal" result who might otherwise become hyperglycemic after normal meals. We suggest that alternative screening procedures be investigated to assess pregnant patients postprandially.


2019 ◽  
Vol 104 (12) ◽  
pp. 6357-6370 ◽  
Author(s):  
Charlotte Wildberg ◽  
Annette Masuch ◽  
Kathrin Budde ◽  
Gabi Kastenmüller ◽  
Anna Artati ◽  
...  

Abstract Objective Impaired glucose tolerance (IGT) is one of the presymptomatic states of type 2 diabetes mellitus and requires an oral glucose tolerance test (OGTT) for diagnosis. Our aims were twofold: (i) characterize signatures of small molecules predicting the OGTT response and (ii) identify metabolic subgroups of participants with IGT. Methods Plasma samples from 827 participants of the Study of Health in Pomerania free of diabetes were measured using mass spectrometry and proton-nuclear magnetic resonance spectroscopy. Linear regression analyses were used to screen for metabolites significantly associated with the OGTT response after 2 hours, adjusting for baseline glucose and insulin levels as well as important confounders. A signature predictive for IGT was established using regularized logistic regression. All cases with IGT (N = 159) were selected and subjected to unsupervised clustering using a k-means approach. Results and Conclusion In total, 99 metabolites and 22 lipoprotein measures were significantly associated with either 2-hour glucose or 2-hour insulin levels. Those comprised variations in baseline concentrations of branched-chain amino ketoacids, acylcarnitines, lysophospholipids, or phosphatidylcholines, largely confirming previous studies. By the use of these metabolites, subjects with IGT segregated into two distinct groups. Our IGT prediction model combining both clinical and metabolomics traits achieved an area under the curve of 0.84, slightly improving the prediction based on established clinical measures. The present metabolomics approach revealed molecular signatures associated directly to the response of the OGTT and to IGT in line with previous studies. However, clustering of subjects with IGT revealed distinct metabolic signatures of otherwise similar individuals, pointing toward the possibility of metabolomics for patient stratification.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Maria Fernanda Garcés ◽  
Julieth Daniela Buell-Acosta ◽  
Haiver Antonio Rodríguez-Navarro ◽  
Estefania Pulido-Sánchez ◽  
Juan José Rincon-Ramírez ◽  
...  

AbstractThis study aimed to determine ANGPTL3 serum levels in healthy young lean and obese non-diabetic men during an oral glucose tolerance test (OGTT) and correlate them with anthropometric, biochemical and hormonal parameters. A case–control study was carried out and 30 young obese non-diabetic (23.90 ± 3.84 years and BMI 37.92 ± 4.85 kg/m2) and 28 age-matched healthy lean (24.56 ± 3.50 years and BMI of 22.10 ± 1.72 kg/m2) men were included in this study. The primary outcome measures were serum basal ANGPTL3 and ANGPTL3–area under the curve (AUC) levels. The percentage of body fat was measured by dual-energy X-ray absorptiometry and biochemical, hormonal and insulin resistance indices were determined. Basal ANGPTL3 and ANGPTL3–AUC levels were significantly elevated (p < 0.05) in young obese subjects compared with lean subjects and were positively and significantly associated with different anthropometric measurements. Fasting ANGPTL3 serum levels were positively correlated with fasting insulin, leptin, Leptin/Adiponectin index and triglyceride—glucose index. Moreover, ANGPTL3–AUC was negatively correlated with Matsuda index. In this regard, chronically high ANGPTL3 levels in young obese subjects might favor triglyceride-rich lipoprotein clearance to replenish triglyceride stores by white adipose tissue rather than oxidative tissues.


Sign in / Sign up

Export Citation Format

Share Document