Nutritional Recommendations for Synchronized Swimming

Author(s):  
Sherry Robertson ◽  
Dan Benardot ◽  
Margo Mountjoy

The sport of synchronized swimming is unique, because it combines speed, power, and endurance with precise synchronized movements and high-risk acrobatic maneuvers. Athletes must train and compete while spending a great amount of time underwater, upside down, and without the luxury of easily available oxygen. This review assesses the scientific evidence with respect to the physiological demands, energy expenditure, and body composition in these athletes. The role of appropriate energy requirements and guidelines for carbohydrate, protein, fat, and micronutrients for elite synchronized swimmers are reviewed. Because of the aesthetic nature of the sport, which prioritizes leanness, the risks of energy and macronutrient deficiencies are of significant concern. Relative Energy Deficiency in Sport and disordered eating/eating disorders are also of concern for these female athletes. An approach to the healthy management of body composition in synchronized swimming is outlined. Synchronized swimmers should be encouraged to consume a well-balanced diet with sufficient energy to meet demands and to time the intake of carbohydrate, protein, and fat to optimize performance and body composition. Micronutrients of concern for this female athlete population include iron, calcium, and vitamin D. This article reviews the physiological demands of synchronized swimming and makes nutritional recommendations for recovery, training, and competition to help optimize athletic performance and to reduce risks for weight-related medical issues that are of particular concern for elite synchronized swimmers.

2018 ◽  
Vol 28 (4) ◽  
pp. 375-384 ◽  
Author(s):  
Sherry Robertson ◽  
Margo Mountjoy

The syndrome of relative energy deficiency in sport (RED-S) is a clinical entity characterized by low energy availability, which can negatively affect the health and performance of both male and female athletes. The underlying mechanism of RED-S is an inadequacy of dietary energy to support optimal health and performance. This syndrome refers to impaired physiological function, including metabolic rate, menstrual function, bone health, immunity, protein synthesis, and cardiovascular health, with psychological consequences that can either precede (through restrictive dietary habits) or result from RED-S. The term RED-S extends beyond the condition termed the “Female Athlete Triad.” Formerly known as synchronized swimming, artistic swimming is an Olympic sport requiring a high level of fitness as well as technical skill and artistry. The risk of RED-S is high in artistic swimming as it is an aesthetic, judged sport with an emphasis on a lean physique. RED-S is of significant concern in the sport of artistic swimming because of the potential negative effects on physical and mental health as well as consequences on athletic performance. This paper reviews health and performance consequences associated with low energy availability resulting in RED-S in artistic swimming. Medical and nutritional considerations specific to artistic swimming are reviewed, and methods to help detect and manage RED-S are discussed. Prevention and management of RED-S in this athlete population should be a priority for coaches, and the sport medicine professionals working with artistic swimming athletes should utilize the RED-S CAT, a Clinical Assessment Tool for screening and managing RED-S.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12118
Author(s):  
Edyta Łuszczki ◽  
Pawel Jagielski ◽  
Anna Bartosiewicz ◽  
Maciej Kuchciak ◽  
Katarzyna Dereń ◽  
...  

Background It has been noticed that Female Athlete Triad (Fat) and Relative Energy Deficiency (Red-S) in Sport are characterized by the symptoms of impaired endocrine-metabolic function and bone health in female athletes. In addition, it may be evaluated with a qualitative tool, such as Low Energy Availability in Females questionnaire (LEAF-Q) and quantitative measurements: bone mineral density (BMD), resting energy expenditure (REE), body composition, 24-hour dietary recall. Methods The aim of this study was to assess the prevalence of Triad and Red-S using the LEAF-Q in youth female football players. Additionally, the difference in the BMD, body composition, REE and energy intake (EI) were assessed between the Triad/Red-S risk and not at-risk groups. Results Almost two thirds (64.7%) of participants are classified as being at-risk for the triad according to their LEAF-Q scores. There were no statistically significant differences (p > 0.05) between most of the values among children from the analyzed groups. There was a statistically significant difference (p < 0.001) between the EI values among girls from the two analyzed groups: at-risk (1,773.18 kcal ±  232.57) and not at-risk (2,054.00 kcal ±  191.39). Girls who did not meet the energy intake recommendations were 10.00 as likely to be in the Triad/Red-S risk group. Conclusion Early identification of Fat/Red-S symptoms by screening tools such as the LEAF questionnaire is important in protecting young athletes from long-term damage due to the progression of the risk factors associated with the Fat/Red-S.


2018 ◽  
Vol 53 (10) ◽  
pp. 628-633 ◽  
Author(s):  
Kathryn E Ackerman ◽  
Bryan Holtzman ◽  
Katherine M Cooper ◽  
Erin F Flynn ◽  
Georgie Bruinvels ◽  
...  

Low energy availability (EA) is suspected to be the underlying cause of both the Female Athlete Triad and the more recently defined syndrome, Relative Energy Deficiency in Sport (RED-S). The International Olympic Committee (IOC) defined RED-S as a syndrome of health and performance impairments resulting from an energy deficit. While the importance of adequate EA is generally accepted, few studies have attempted to understand whether low EA is associated with the health and performance consequences posited by the IOC.ObjectiveThe purpose of this cross-sectional study was to examine the association of low EA with RED-S health and performance consequences in a large clinical population of female athletes.MethodsOne thousand female athletes (15–30 years) completed an online questionnaire and were classified as having low or adequate EA. The associations between low EA and the health and performance factors listed in the RED-S models were evaluated using chi-squared test and the odds ratios were evaluated using binomial logistic regression (p<0.05).ResultsAthletes with low EA were more likely to be classified as having increased risk of menstrual dysfunction, poor bone health, metabolic issues, haematological detriments, psychological disorders, cardiovascular impairment and gastrointestinal dysfunction than those with adequate EA. Performance variables associated with low EA included decreased training response, impaired judgement, decreased coordination, decreased concentration, irritability, depression and decreased endurance performance.ConclusionThese findings demonstrate that low EA measured using self-report questionnaires is strongly associated with many health and performance consequences proposed by the RED-S models.


2017 ◽  
Vol 12 (4) ◽  
pp. 422-430 ◽  
Author(s):  
Martin Mooses ◽  
Anthony C. Hackney

Maximal oxygen uptake (V̇O2max), fractional utilization of V̇O2max during running, and running economy (RE) are crucial factors for running success for all endurance athletes. Although evidence is limited, investigations of these key factors indicate that East Africans’ superiority in distance running is largely due to a unique combination of these factors. East African runners appear to have a very high level of RE most likely associated, at least partly, with anthropometric characteristics rather than with any specific metabolic property of the working muscle. That is, evidence suggest that anthropometrics and body composition might have important parameters as determinants of superior performance of East African distance runners. Regrettably, this role is often overlooked and mentioned as a descriptive parameter rather than an explanatory parameter in many research studies. This brief review article provides an overview of the evidence to support the critical role anthropometrics and body composition has on the distance running success of East African athletes. The structural form and shape of these athletes also has a downside, because having very low BMI or body fat increases the risk for relative energy deficiency in sport (RED-S) conditions in both male and female runners, which can have serious health consequences.


2021 ◽  
Author(s):  
Margot Rogers ◽  
Nicole Vlahovich ◽  
David Hughes ◽  
David Pyne ◽  
Shona Halson ◽  
...  

2021 ◽  
Author(s):  
Nicola Keay ◽  
Eddie Craghill ◽  
Gavin Francis

Abstract Objectives The purpose of this study was to assess the energy availability status of professional female football players with an online Female Football Energy Availability Questionnaire (FFEAQ), combined with the clinical tool to model menstrual cycle hormones using artificial intelligence (AI) techniques. Methods The Female Football Energy Availability (FFEAQ) was developed based on published questionnaires, with a weighted scoring system to assess risk of Relative Energy Deficiency in Sport (RED-S). For menstrual cycle hormones AI techniques modelled hormone variation over a cycle, using the results from capillary blood samples taken at two time points. Results 21 female footballers of professional club level participated in this study, with mean age 22 years [range 16 to 30]. 20 athletes recorded positive scores on the FFEAQ, suggesting a low risk of Relative Energy Deficiency in Sport (RED-S). No players had experienced primary amenorrhoea. 5 athletes reported previous history of secondary amenorrhoea. Amongst the 15 players not taking hormonal contraception, 2 reported current oligomenorrhoea. The application of AI techniques to model menstrual cycle hormones found that in 1 of the 3 players, subclinical hormone disruption was occurring with this player reporting variable flow of menstruation. Although the other 2 players showed expected menstrual hormone variation, 1 player reported variable flow according to training load, suggestive of subclinical anovulation. At the time of testing training load was low due to pandemic lock down. Conclusions The professional female football athletes in this study were found to be at low risk of RED-S from the FFEAQ. Modelling menstrual cycle hormones using AI techniques indicated that this has the potential to be an effective clinical tool in identifying subtle hormone dysfunction such as subclinical anovulatory cycles in female athletes.


2021 ◽  
Vol 12 ◽  
Author(s):  
David R. Hooper ◽  
Jared Mallard ◽  
Jeff T. Wight ◽  
Kara L. Conway ◽  
George G.A. Pujalte ◽  
...  

The purpose of this case series was to evaluate the presence of low Energy Availability (EA) and its impact on components of Relative Energy Deficiency in Sport (RED-S) in a population of female collegiate runners. Seven female NCAA Division I athletes (age: 22.3 ± 1.5 yrs; height: 169.7 ± 5.7 cm; weight: 58.3 ± 4.1 kg) were tracked from August until February, covering the beginning (Pre XC), end (Post XC) of their competitive cross country season, and beginning of the following track season (Pre Track). The athletes were assessed for female athlete triad (Triad) risk, energy availability, body composition, resting metabolic rate (RMR), nutritional intake, and blood markers (including vitamin D, ferritin, and triiodothyronine (T3)). From Pre XC to Post XC there were no significant differences in body mass, fat free mass or body fat percentage. At Pre XC, mean EA was 31.6 ± 13.3 kcal/kg FFM∙d-1. From Post XC to Pre Track, there was a significant increase in body mass (59.1 ± 5.1 to 60.6 ± 5.7 kg, p&lt;0.001,d=0.27). From Post XC to Pre Track, there was a significant increase in RMR (1466 ± 123.6 to 1614.6 ± 89.1 kcal·d-1, p&lt;0.001,d=2.6). For 25(OH) vitamin D, there was a significant reduction from Pre XC to Post XC (44.1 ± 10.6 vs 39.5 ± 12.2 ng·mL-1, p=0.047,d=-0.4), and a significant increase from Post XC to Pre Track (39.5 ± 12.2 vs. 48.1 ± 10.4 ng·mL-1, p=0.014,d=0.75). For ferritin, there was a trend towards a decrease from Pre XC to Post XC (24.2 ± 13.2 vs. 15.7 ± 8.8 ng·mL-1, p=0.07, d=-0.75), as well as a trend toward an increase from Post XC to Pre Track (15.7 ± 8.8 vs. 34.1 ± 18.0 ng·mL-1, p=0.08, d=1.3). No differences in T3 were observed across time points. Average Triad risk score was 2.3 ± 1.4. Notably, 5 of 7 athletes met criteria for moderate risk. Despite many athletes meeting criteria for low EA and having elevated Triad risk assessment scores, most were able to maintain body mass and RMR. One athlete suffered severe performance decline and a reduced RMR. Surprisingly, she was the only athlete above the recommended value for ferritin. Following increased nutritional intake and reduced training volume, her performance and RMR recovered. Changes in body mass and body composition were not indicative of the presence of other concerns associated with RED-S. This exploratory work serves as a guide for future, larger studies for tracking athletes, using RMR and nutritional biomarkers to assess RED-S.


2020 ◽  
Vol 55 (1) ◽  
pp. 38-45
Author(s):  
Margot Anne Rogers ◽  
Renee Newcomer Appaneal ◽  
David Hughes ◽  
Nicole Vlahovich ◽  
Gordon Waddington ◽  
...  

ObjectivesAthlete health, training continuity and performance can be impeded as a result of Relative Energy Deficiency in Sport (RED-S). Here we report the point prevalence of symptoms described by the RED-S model in a mixed-sport cohort of Australian female athletes.MethodsElite and pre-elite female athletes (n=112) from eight sports completed validated questionnaires and underwent clinical assessment to assess the point prevalence of RED-S symptoms. Questionnaires included the Depression, Anxiety and Stress Questionnaire (DASS-21), Generalized Anxiety Disorder (GAD-7), Center for Epidemiological Studies Depression Scale (CES-D), SCOFF questionnaire for disordered eating, Low Energy Availability in Females Questionnaire (LEAF-Q), and a custom questionnaire on injury and illness. Clinical assessment comprised resting metabolic rate (RMR) assessment, dual-energy X-ray absorptiometry-derived body composition and bone mineral density, venous and capillary blood samples, and the Mini International Neuropsychiatric Interview (MINI 7.0.2). Descriptive prevalence statistics are presented.ResultsAlmost all (80%) participants (age 19 (range 15–32) years; mass 69.5±10.3 kg; body fat 23.1%±5.0%) demonstrated at least one symptom consistent with RED-S, with 37% exhibiting between two and three symptoms. One participant demonstrated five symptoms. Impaired function of the immunological (28%, n=27), haematological (31%, n=33) and gastrointestinal (47%, n=51) systems were most prevalent. A moderate to high (11%–55%) prevalence of risk of low energy availability was identified via RMR and LEAF-Q, and identified mental illnesses were prevalent in one-third of the assessed cohort.ConclusionSymptoms described by the RED-S model were prevalent in this cohort, supporting the need for improved awareness, monitoring and management of these symptoms in this population.


Author(s):  
Megan A. Kuikman ◽  
Margo Mountjoy ◽  
Trent Stellingwerff ◽  
Jamie F. Burr

Relative energy deficiency in sport (RED-S) can result in negative health and performance outcomes in both male and female athletes. The underlying etiology of RED-S is low energy availability (LEA), which occurs when there is insufficient dietary energy intake to meet exercise energy expenditure, corrected for fat-free mass, leaving inadequate energy available to ensure homeostasis and adequate energy turnover (optimize normal bodily functions to positively impact health), but also optimizing recovery, training adaptations, and performance. As such, treatment of RED-S involves increasing energy intake and/or decreasing exercise energy expenditure to address the underlying LEA. Clinically, however, the time burden and methodological errors associated with the quantification of energy intake, exercise energy expenditure, and fat-free mass to assess energy availability in free-living conditions make it difficult for the practitioner to implement in everyday practice. Furthermore, interpretation is complicated by the lack of validated energy availability thresholds, which can result in compromised health and performance outcomes in male and female athletes across various stages of maturation, ethnic races, and different types of sports. This narrative review focuses on pragmatic nonpharmacological strategies in the treatment of RED-S, featuring factors such as low carbohydrate availability, within-day prolonged periods of LEA, insufficient intake of bone-building nutrients, lack of mechanical bone stress, and/or psychogenic stress. This includes the implementation of strategies that address exacerbating factors of LEA, as well as novel treatment methods and underlying mechanisms of action, while highlighting areas of further research.


Sign in / Sign up

Export Citation Format

Share Document