A Review of Nonpharmacological Strategies in the Treatment of Relative Energy Deficiency in Sport

Author(s):  
Megan A. Kuikman ◽  
Margo Mountjoy ◽  
Trent Stellingwerff ◽  
Jamie F. Burr

Relative energy deficiency in sport (RED-S) can result in negative health and performance outcomes in both male and female athletes. The underlying etiology of RED-S is low energy availability (LEA), which occurs when there is insufficient dietary energy intake to meet exercise energy expenditure, corrected for fat-free mass, leaving inadequate energy available to ensure homeostasis and adequate energy turnover (optimize normal bodily functions to positively impact health), but also optimizing recovery, training adaptations, and performance. As such, treatment of RED-S involves increasing energy intake and/or decreasing exercise energy expenditure to address the underlying LEA. Clinically, however, the time burden and methodological errors associated with the quantification of energy intake, exercise energy expenditure, and fat-free mass to assess energy availability in free-living conditions make it difficult for the practitioner to implement in everyday practice. Furthermore, interpretation is complicated by the lack of validated energy availability thresholds, which can result in compromised health and performance outcomes in male and female athletes across various stages of maturation, ethnic races, and different types of sports. This narrative review focuses on pragmatic nonpharmacological strategies in the treatment of RED-S, featuring factors such as low carbohydrate availability, within-day prolonged periods of LEA, insufficient intake of bone-building nutrients, lack of mechanical bone stress, and/or psychogenic stress. This includes the implementation of strategies that address exacerbating factors of LEA, as well as novel treatment methods and underlying mechanisms of action, while highlighting areas of further research.

Author(s):  
Karine Schaal ◽  
Marta D VanLoan ◽  
Christophe Hausswirth ◽  
Gretchen A Casazza

Low energy availability (EA) suppresses many physiological processes, including ovarian function in female athletes. Low EA could also predispose athletes to develop a state of overreaching. This study compared the changes in ad libitum energy intake (EI), exercise energy expenditure (ExEE), and EA among runners completing a training overload (TO) phase. We tested the hypothesis that runners becoming overreached would show decreased EA, suppressed ovarian function and plasma leptin, compared to well-adapted (WA) runners. After 1 menstrual cycle (baseline), 16 eumenorrheic runners performed 4 weeks of TO followed by a 2-week recovery (131±3% and 63±6% of baseline running volume respectively). Seven-day ExEE, EI, running performance (RUNPERF) and plasma [leptin] were assessed for each phase. Salivary [estradiol] was measured daily. Urinary [luteinizing hormone] tests confirmed ovulation. Nine runners adapted positively to TO (WA,ΔRUNPERF: +4±2%); seven were non-functionally overreached (NFOR, ΔRUNPERF –9±2%) as RUNPERF remained suppressed after the recovery period. WA increased EI during TO, maintaining their baseline EA despite a large increase in ExEE (ΔEA=+1.9±1.3 kcal.kgFFM-1.d-1, P=0.17). By contrast, NFOR showed no change in EI, leading to decreased EA (ΔEA=-5.6±2.1 kcal.kgFFM-1.d-1, P=0.04). [Leptin]b, mid-cycle and luteal [estradiol]s decreased in NFOR only. Contrasting with WA, NFOR failed to maintain baseline EA during TO, resulting in poor performance outcomes and suppressed ovarian function.NCT02224976. NOVELTY BULLETS: -Runners adapting positively to training overload (TO) increased ad libitum energy intake, maintaining baseline EA and ovarian function through TO. -By contrast, NFOR runners failed to increase energy intake, showing suppressed EA and ovarian function during TO.


2018 ◽  
Vol 53 (10) ◽  
pp. 628-633 ◽  
Author(s):  
Kathryn E Ackerman ◽  
Bryan Holtzman ◽  
Katherine M Cooper ◽  
Erin F Flynn ◽  
Georgie Bruinvels ◽  
...  

Low energy availability (EA) is suspected to be the underlying cause of both the Female Athlete Triad and the more recently defined syndrome, Relative Energy Deficiency in Sport (RED-S). The International Olympic Committee (IOC) defined RED-S as a syndrome of health and performance impairments resulting from an energy deficit. While the importance of adequate EA is generally accepted, few studies have attempted to understand whether low EA is associated with the health and performance consequences posited by the IOC.ObjectiveThe purpose of this cross-sectional study was to examine the association of low EA with RED-S health and performance consequences in a large clinical population of female athletes.MethodsOne thousand female athletes (15–30 years) completed an online questionnaire and were classified as having low or adequate EA. The associations between low EA and the health and performance factors listed in the RED-S models were evaluated using chi-squared test and the odds ratios were evaluated using binomial logistic regression (p<0.05).ResultsAthletes with low EA were more likely to be classified as having increased risk of menstrual dysfunction, poor bone health, metabolic issues, haematological detriments, psychological disorders, cardiovascular impairment and gastrointestinal dysfunction than those with adequate EA. Performance variables associated with low EA included decreased training response, impaired judgement, decreased coordination, decreased concentration, irritability, depression and decreased endurance performance.ConclusionThese findings demonstrate that low EA measured using self-report questionnaires is strongly associated with many health and performance consequences proposed by the RED-S models.


Author(s):  
Louise M. Burke ◽  
Bronwen Lundy ◽  
Ida L. Fahrenholtz ◽  
Anna K. Melin

The human body requires energy for numerous functions including, growth, thermogenesis, reproduction, cellular maintenance, and movement. In sports nutrition, energy availability (EA) is defined as the energy available to support these basic physiological functions and good health once the energy cost of exercise is deducted from energy intake (EI), relative to an athlete’s fat-free mass (FFM). Low EA provides a unifying theory to link numerous disorders seen in both female and male athletes, described by the syndrome Relative Energy Deficiency in Sport, and related to restricted energy intake, excessive exercise or a combination of both. These outcomes are incurred in different dose–response patterns relative to the reduction in EA below a “healthy” level of ∼45 kcal·kg FFM−1·day−1. Although EA estimates are being used to guide and monitor athletic practices, as well as support a diagnosis of Relative Energy Deficiency in Sport, problems associated with the measurement and interpretation of EA in the field should be explored. These include the lack of a universal protocol for the calculation of EA, the resources needed to achieve estimates of each of the components of the equation, and the residual errors in these estimates. The lack of a clear definition of the value for EA that is considered “low” reflects problems around its measurement, as well as differences between individuals and individual components of “normal”/“healthy” function. Finally, further investigation of nutrition and exercise behavior including within- and between-day energy spread and dietary characteristics is warranted since it may directly contribute to low EA or its secondary problems.


Nutrients ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3262 ◽  
Author(s):  
Thomas Egger ◽  
Joelle Leonie Flueck

Background: Low energy availability (LEA) is a major problem as athletes often restrict their energy intake. It has been shown that LEA occurs often in female and endurance athletes and in athletes from weight-sensitive or aesthetic sports. The purpose of this study was to investigate energy availability (EA) in elite wheelchair athletes. Methods: Fourteen elite wheelchair athletes (8 males; 6 females) participated. Data were collected using a weighed seven-day food and training diary to estimate energy intake and exercise energy expenditure. Resting energy expenditure and body composition were measured, whereas energy balance (EB) was calculated. Results: Measured over 7 days, EA was significantly different (36.1 ± 6.7 kcal kg−1 FFM day−1) in male compared to female (25.1 ± 7.1 kcal kg−1 FFM day−1) athletes (p < 0.001). From all analyzed days, LEA occurred in 73% of the days in female athletes and in 30% of the days in male athletes. EB was positive in male athletes (+169.1 ± 304.5 kcal) and negative (−288.9 ± 304.8 kcal) in female athletes. Conclusions: A higher prevalence of LEA was found in female compared to male athletes. A higher energy intake would be recommended to meet energy needs and to maximize training adaptation.


Author(s):  
Braeden T. Charlton ◽  
Sara Forsyth ◽  
David C. Clarke

The Female Athlete Triad (Triad) and the more encompassing Relative Energy Deficiency in Sport (RED-S) are disorders caused by low energy availability (LEA). LEA is a state of insufficient energy intake by an athlete relative to their energy expenditure. Persistent LEA results in the deleterious consequences to health and performance that comprise RED-S. With respect to both the Triad and RED-S, researchers have called for more education of those involved with sport, particularly coaches, to help reduce the incidence of these disorders. Recent studies have shown that as few as 15% of coaches are aware of the Triad, with up to 89% unable to identify even one of its symptoms. RED-S is a more recently established concept such that coach knowledge regarding it has only begun to be assessed, but the results of these initial studies indicate similar trends as for the Triad. In this review, we synthesize research findings from 1986 to 2021 that pertains to LEA and RED-S, which coaches should know so they can better guide their athletes.


Author(s):  
Sarah J. Woodruff ◽  
Renee D. Meloche

Female athletes should aim to achieve energy balance to maintain health and have a high performance output. The purpose of this study was to investigate energy availability (EA) among members of a medium-size Canadian Interuniversity Sport women’s volleyball team and to describe exercise energy expenditure (ExEE) during practices, game warm-ups, and games. Total daily energy expenditure was assessed over 7 d using the Bodymedia Sensewear Mini armband, while energy intake (EI) was measured with dietary food logs. Body composition was assessed using air-displacement plethysmography (Bod Pod). Energy availability was calculated using the equation EA = (EIkcal – ExEEkcal)/kg fat-free mass (FFM). Participants consumed 3,435 (± 1,172) kcal/day and expended 3479 (± 604) kcal/day. Mean EA was 42.5 kcal · kg FFM-1 · d-1 across all 7 d, and 2 participants fell below the 30-kcal · kg FFM-1 · d-1 threshold. Furthermore, participants expended 511 (± 216), 402 (± 50), and 848 (± 155) kcal during practices, game warm-ups, and games, respectively. Overall, the participants were relatively weight stable and should be encouraged to continue fueling their exercise and high ExEE needs with appropriate nutritional strategies.


2018 ◽  
Vol 28 (4) ◽  
pp. 375-384 ◽  
Author(s):  
Sherry Robertson ◽  
Margo Mountjoy

The syndrome of relative energy deficiency in sport (RED-S) is a clinical entity characterized by low energy availability, which can negatively affect the health and performance of both male and female athletes. The underlying mechanism of RED-S is an inadequacy of dietary energy to support optimal health and performance. This syndrome refers to impaired physiological function, including metabolic rate, menstrual function, bone health, immunity, protein synthesis, and cardiovascular health, with psychological consequences that can either precede (through restrictive dietary habits) or result from RED-S. The term RED-S extends beyond the condition termed the “Female Athlete Triad.” Formerly known as synchronized swimming, artistic swimming is an Olympic sport requiring a high level of fitness as well as technical skill and artistry. The risk of RED-S is high in artistic swimming as it is an aesthetic, judged sport with an emphasis on a lean physique. RED-S is of significant concern in the sport of artistic swimming because of the potential negative effects on physical and mental health as well as consequences on athletic performance. This paper reviews health and performance consequences associated with low energy availability resulting in RED-S in artistic swimming. Medical and nutritional considerations specific to artistic swimming are reviewed, and methods to help detect and manage RED-S are discussed. Prevention and management of RED-S in this athlete population should be a priority for coaches, and the sport medicine professionals working with artistic swimming athletes should utilize the RED-S CAT, a Clinical Assessment Tool for screening and managing RED-S.


Proceedings ◽  
2019 ◽  
Vol 37 (1) ◽  
pp. 24
Author(s):  
Winter ◽  
Black ◽  
Brown

Background: Low Energy Availability (LEA), Relative Energy Deficiency in Sport (RED-S) and the Female Athlete Triad (Triad) are generally related to the negative health effects of consuming insufficient energy to meet exercise energy expenditure and maintain normal physiological function. [...]


2021 ◽  
Author(s):  
Patrick Mullie ◽  
Pieter Maes ◽  
Laurens van Veelen ◽  
Damien Van Tiggelen ◽  
Peter Clarys

ABSTRACT Introduction Adequate energy supply is a prerequisite for optimal performances and recovery. The aims of the present study were to estimate energy balance and energy availability during a selection course for Belgian paratroopers. Methods Energy expenditure by physical activity was measured with accelerometer (ActiGraph GT3X+, ActiGraph LLC, Pensacola, FL, USA) and rest metabolic rate in Cal.d−1 with Tinsley et al.’s equation based on fat-free mass = 25.9 × fat-free mass in kg + 284. Participants had only access to the French individual combat rations of 3,600 Cal.d−1, and body fat mass was measured with quadripolar impedance (Omron BF508, Omron, Osaka, Japan). Energy availability was calculated by the formula: ([energy intake in foods and beverages] − [energy expenditure physical activity])/kg FFM−1.d−1, with FFM = fat-free mass. Results Mean (SD) age of the 35 participants was 25.1 (4.18) years, and mean (SD) percentage fat mass was 12.0% (3.82). Mean (SD) total energy expenditure, i.e., the sum of rest metabolic rate, dietary-induced thermogenesis, and physical activity, was 5,262 Cal.d−1 (621.2), with percentile 25 at 4,791 Cal.d−1 and percentile 75 at 5,647 Cal.d−1, a difference of 856 Cal.d−1. Mean daily energy intake was 3,600 Cal.d−1, giving a negative energy balance of 1,662 (621.2) Cal.d−1. Mean energy availability was 9.3 Cal.kg FFM−1.d−1. Eleven of the 35 participants performed with a negative energy balance of 2,000 Cal.d−1, and only five participants out of 35 participants performed at a less than 1,000 Cal.d−1 negative energy balance level. Conclusions Energy intake is not optimal as indicated by the negative energy balance and the low energy availability, which means that the participants to this selection course had to perform in suboptimal conditions.


Sign in / Sign up

Export Citation Format

Share Document