Induced Alkalosis and Gastrointestinal Symptoms After Sodium Citrate Ingestion: a Dose-Response Investigation

2016 ◽  
Vol 26 (6) ◽  
pp. 542-548 ◽  
Author(s):  
Charles S. Urwin ◽  
Dan B. Dwyer ◽  
Amelia J. Carr

Sodium citrate induces alkalosis and can provide a performance benefit in high-intensity exercise. Previous investigations have been inconsistent in the ingestion protocols used, in particular the dose and timing of ingestion before the onset of exercise. The primary aim of the current study was to quantify blood pH, blood bicarbonate concentration and gastrointestinal symptoms after ingestion of three doses of sodium citrate (500 mg⋅kg-1, 700 mg⋅kg-1 and 900 mg⋅kg-1). Thirteen participants completed four experimental sessions, each consisting of a different dose of sodium citrate or a taste-matched placebo solution. Blood pH and blood bicarbonate concentration were measured at 30-min intervals via analysis of capillary blood samples. Gastrointestinal symptoms were also monitored at 30-min intervals. Statistical significance was accepted at a level of p < .05. Both measures of alkalosis were significantly greater after ingestion of sodium citrate compared with placebo (p < .001). No significant differences in alkalosis were found between the three sodium citrate doses (p > .05). Peak alkalosis following sodium citrate ingestion ranged from 180 to 212 min after ingestion. Gastrointestinal symptoms were significantly higher after sodium citrate ingestion compared with placebo (p < .001), while the 900 mg.kg-1 dose elicited significantly greater gastrointestinal distress than 500 mg⋅kg-1 (p = .004). It is recommended that a dose of 500 mg⋅kg-1 of sodium citrate should be ingested at least 3 hr before exercise, to achieve peak alkalosis and to minimize gastrointestinal symptoms before and during exercise.

PLoS ONE ◽  
2021 ◽  
Vol 16 (5) ◽  
pp. e0251808
Author(s):  
Charles S. Urwin ◽  
Rodney J. Snow ◽  
Liliana Orellana ◽  
Dominique Condo ◽  
Glenn D. Wadley ◽  
...  

Objectives To compare blood alkalosis, gastrointestinal symptoms and indicators of strong ion difference after ingestion of 500 mg.kg-1 BM sodium citrate over four different periods. Methods Sixteen healthy and active participants ingested 500 mg.kg-1 BM sodium citrate in gelatine capsules over a 15, 30, 45 or 60 min period using a randomized cross-over experimental design. Gastrointestinal symptoms questionnaires and venous blood samples were collected before ingestion, immediately post-ingestion, and every 30 min for 480 min post-ingestion. Blood samples were analysed for blood pH, [HCO3-], [Na+], [Cl-] and plasma [citrate]. Linear mixed models were used to estimate the effect of the ingestion protocols. Results For all treatments, blood [HCO3-] was significantly elevated above baseline for the entire 480 min post-ingestion period, and peak occurred 180 min post-ingestion. Blood [HCO3-] and pH were significantly elevated above baseline and not significantly below the peak between 150–270 min post-ingestion. Furthermore, blood pH and [HCO3-] were significantly lower for the 60 min ingestion period when compared to the other treatments. Gastrointestinal symptoms were minor for all treatments; the mean total session symptoms ratings (all times summed together) were between 9.8 and 11.6 from a maximum possible rating of 720. Conclusion Based on the findings of this investigation, sodium citrate should be ingested over a period of less than 60 min (15, 30 or 45 min), and completed 150–270 min before exercise.


2018 ◽  
Vol 65 (1) ◽  
pp. 89-98 ◽  
Author(s):  
Michal Kumstát ◽  
Tomáš Hlinský ◽  
Ivan Struhár ◽  
Andy Thomas

Abstract The aim of this study was to investigate the effect of ingesting sodium bicarbonate (SB) and sodium citrate (SC) on 400 m high-intensity swimming performance and blood responses. Six nationally ranked male swimmers (20.7 ± 2.1 yrs; 184 ± 6 cm; 79.9 ± 3.9 kg; 10.6 ± 1% body fat) participated in a double blinded, placebo controlled crossover trial. Ninety minutes after consuming SB (0.3 g·kg-1), SC (0.3 g·kg-1) or a placebo (PL) participants completed a single 400-m freestyle maximal test on three consecutive days. The order of the supplementation was randomized. Capillary blood samples were collected on 4 occasions: at rest (baseline), 60 min post-ingestion, immediately post-trial and 15 min post-trial. Blood pH, HCO3- concentration and base excess (BE) were determined. Blood pH, HCO3-, BE were significantly elevated from before loading to the pre-test (60 min post-ingestion) (p < 0.05) after SB ingestion, but not after SC ingestion (p > 0.05). Performance times were improved by 0.6% (p > 0.05) after supplementation of SB over PL in 5 out of 6 participants (responders). In contrast, ingestion of SC decreased performance by 0.2% (p > 0.05). No side effects were observed in either trial. Delayed blood response was observed after SC ingestion compared to SB and this provided no or modest ergogenic effect, respectively, for single bout high-intensity swimming exercise. Monitoring the magnitude of the time-to-peak level rise in alkalosis may be recommended in order to individualize the loading time accordingly before commencement of exercise.


2021 ◽  
Author(s):  
Silvia Barbaresi ◽  
Laura Blancquaert ◽  
Zoran Nikolovski ◽  
Sarah de Jager ◽  
Mathew Wilson ◽  
...  

Abstract Background: chicken meat extract is a popular functional food in Asia. It is rich in the bioactive compounds carnosine and anserine, two histidine-containing dipeptides (HCD). Studies suggest that acute pre-exercise ingestion of chicken extracts has important applications towards exercise performance and fatigue control, but the evidence is equivocal. This study aimed to evaluate the ergogenic potential of the pre-exercise ingestion of a homemade chicken broth (CB) vs a placebo soup on a short-lasting, high-intensity cycling exercise. Methods: fourteen men participated in this double-blind, placebo-controlled, crossover intervention study. Subjects ingested either CB, thereby receiving 46.4 mg/kg body weight of HCD, or a placebo soup (similar in taste without HCD) 40 min before an 8 min cycling time trial (TT) was performed. Venous blood samples were collected at arrival (fasted), before exercise and at 5 min recovery. Plasma HCD were measured with UPLC-MS/MS and glutathione (in red blood cells) was measured through HPLC. Capillary blood samples were collected at different timepoints before and after exercise. Results: a significant improvement (p=0.033; 5.2%) of the 8 min TT mean power was observed after CB supplementation compared to placebo. Post-exercise plasma carnosine (p<0.05) and anserine (p<0.001) was significantly increased after CB supplementation and not following placebo. No significant effect of CB supplementation was observed either on blood glutathione levels, nor on capillary blood analysis. Conclusions: oral CB supplementation improved the 8 min TT performance albeit it did not affect the acid-base balance or oxidative status parameters. Further research should unravel the potential role and mechanisms of HCD, present in CB, in this ergogenic approach.


Author(s):  
Charles S. Urwin ◽  
Rodney J. Snow ◽  
Dominique Condo ◽  
Rhiannon Snipe ◽  
Glenn D. Wadley ◽  
...  

This review aimed to identify factors associated with (a) physiological responses, (b) gastrointestinal (GI) symptoms, and (c) exercise performance following sodium citrate supplementation. A literature search identified 33 articles. Observations of physiological responses and GI symptoms were categorized by dose (< 500, 500, and > 500 mg/kg body mass [BM]) and by timing of postingestion measurements (in minutes). Exercise performance following sodium citrate supplementation was compared with placebo using statistical significance, percentage change, and effect size. Performance observations were categorized by exercise duration (very short < 60 s, short ≥ 60 and ≤ 420 s, and longer > 420 s) and intensity (very high > 100% VO2max and high 90–100% VO2max). Ingestion of 500 mg/kg BM sodium citrate induced blood alkalosis more frequently than < 500 mg/kg BM, and with similar frequency to >500 mg/kg BM. The GI symptoms were minimized when a 500 mg/kg BM dose was ingested in capsules rather than in solution. Significant improvements in performance following sodium citrate supplementation were reported in all observations of short-duration and very high–intensity exercise with a 500 mg/kg BM dose. However, the efficacy of supplementation for short-duration, high-intensity exercise is less clear, given that only 25% of observations reported significant improvements in performance following sodium citrate supplementation. Based on the current literature, the authors recommend ingestion of 500 mg/kg BM sodium citrate in capsules to induce alkalosis and minimize GI symptoms. Supplementation was of most benefit to performance of short-duration exercise of very high intensity; further investigation is required to determine the importance of ingestion duration and timing.


Author(s):  
Silvia Barbaresi ◽  
Laura Blancquaert ◽  
Zoran Nikolovski ◽  
Sarah de Jager ◽  
Mathew Wilson ◽  
...  

Abstract Background chicken meat extract is a popular functional food in Asia. It is rich in the bioactive compounds carnosine and anserine, two histidine-containing dipeptides (HCD). Studies suggest that acute pre-exercise ingestion of chicken extracts has important applications towards exercise performance and fatigue control, but the evidence is equivocal. This study aimed to evaluate the ergogenic potential of the pre-exercise ingestion of a homemade chicken broth (CB) vs a placebo soup on a short-lasting, high-intensity cycling exercise. Methods fourteen men participated in this double-blind, placebo-controlled, crossover intervention study. Subjects ingested either CB, thereby receiving 46.4 mg/kg body weight of HCD, or a placebo soup (similar in taste without HCD) 40 min before an 8 min cycling time trial (TT) was performed. Venous blood samples were collected at arrival (fasted), before exercise and at 5 min recovery. Plasma HCD were measured with UPLC-MS/MS and glutathione (in red blood cells) was measured through HPLC. Capillary blood samples were collected at different timepoints before and after exercise. Results a significant improvement (p = 0.033; 5.2%) of the 8 min TT mean power was observed after CB supplementation compared to placebo. Post-exercise plasma carnosine (p <  0.05) and anserine (p <  0.001) was significantly increased after CB supplementation and not following placebo. No significant effect of CB supplementation was observed either on blood glutathione levels, nor on capillary blood analysis. Conclusions oral CB supplementation improved the 8 min TT performance albeit it did not affect the acid-base balance or oxidative status parameters. Further research should unravel the potential role and mechanisms of HCD, present in CB, in this ergogenic approach.


2020 ◽  
Author(s):  
silvia barbaresi ◽  
Laura Blancquaert ◽  
Zoran Nikolovski ◽  
Sarah de Jager ◽  
Mathew Wilson ◽  
...  

Abstract Background: chicken meat extract is a popular functional food in Asia. It is rich in the bioactive compounds carnosine and anserine, two histidine-containing dipeptides (HCD). Studies suggest that acute pre-exercise ingestion of chicken extracts has important applications towards exercise performance and fatigue control, but the evidence is equivocal. This study aimed to evaluate the ergogenic potential of the pre-exercise ingestion of a homemade chicken broth (CB) vs a placebo soup on a short-lasting, high-intensity cycling exercise. Methods: fourteen men participated in this double-blind, placebo-controlled, crossover intervention study. Subjects ingested either CB, thereby receiving 46.4 mg/kg body weight of HCD, or a placebo soup (similar in taste without HCD) 40 min before an 8 min cycling time trial (TT) was performed. Venous blood samples were collected at arrival (fasted), before exercise and at 5 min recovery. Plasma HCD were measured with UPLC-MS/MS and glutathione (in red blood cells) was measured through HPLC. Capillary blood samples were collected at different timepoints before and after exercise. Results: a significant improvement (p=0.033; 5.2%) of the 8 min TT mean power was observed after CB supplementation compared to placebo. Post-exercise plasma carnosine (p<0.05) and anserine (p<0.001) was significantly increased after CB supplementation and not following placebo. No significant effect of CB supplementation was observed either on blood glutathione levels, nor on capillary blood analysis. Conclusions: oral CB supplementation improved the 8 min TT performance albeit it did not affect the acid-base balance or oxidative status parameters. Further research should unravel the potential role and mechanisms of HCD, present in CB, in this ergogenic approach.


2019 ◽  
Vol 7 (19) ◽  
Author(s):  
Charles S. Urwin ◽  
Rodney J. Snow ◽  
Liliana Orellana ◽  
Dominique Condo ◽  
Glenn D. Wadley ◽  
...  

Author(s):  
Robert Robergs ◽  
Keith Hutchinson ◽  
Shonn Hendee ◽  
Sean Madden ◽  
Jason Siegler

The purpose of this study was to measure the recovery kinetics of pH and lactate for the conditions of pre-exercise acidosis, alkalosis, and placebo states. Twelve trained male cyclists completed 3 exercise trials (110% workload at VO2max), ingesting either 0.3 g/kg of NH4Cl (ACD), 0.2 g/kg of Na+HCO3- and 0.2 g/kg of sodium citrate (ALK), or a placebo (calcium carbonate) (PLAC). Blood samples (heated dorsal hand vein) were drawn before, during, and after exercise. Exercise-induced acidosis was more severe in the ACD and PLAC trials (7.15 ± 0.06, 7.21 ± 0.07, 7.16 ± 0.06, P < 0.05, for ACD, ALK, PLAC, respectively). Recovery kinetics for blood pH and lactate, as assessed by the monoexponential slope constant, were not different between trials (0.057 ± 0.01, 0.050 ± 0.01, 0.080 ± 0.02, for ACD, ALK, PLAC, respectively). Complete recovery of blood pH from metabolic acidosis can take longer than 45 min. Such a recovery profile is nonlinear, with 50% recovery occurring in approximately 12 min. Complete recovery of blood lactate can take longer than 60 min, with 50% recovery occurring in approximately 30 min. Induced alkalosis decreases metabolic acidosis and improves pH recovery compared to acidodic and placebo conditions. Although blood pH and lactate are highly correlated during recovery from acidosis, they recover at significantly different rates.


2011 ◽  
Vol 21 (3) ◽  
pp. 189-194 ◽  
Author(s):  
Amelia J. Carr ◽  
Gary J. Slater ◽  
Christopher J. Gore ◽  
Brian Dawson ◽  
Louise M. Burke

Context:Sodium bicarbonate (NaHCO3) is often ingested at a dose of 0.3 g/kg body mass (BM), but ingestion protocols are inconsistent in terms of using solution or capsules, ingestion period, combining NaHCO3 with sodium citrate (Na3C6H5O7), and coingested food and fluid.Purpose:To quantify the effect of ingesting 0.3 g/kg NaHCO3 on blood pH, [HCO3−], and gastrointestinal (GI) symptoms over the subsequent 3 hr using a range of ingestion protocols and, thus, to determine an optimal protocol.Methods:In a crossover design, 13 physically active subjects undertook 8 NaHCO3 experimental ingestion protocols and 1 placebo protocol. Capillary blood was taken every 30 min and analyzed for pH and [HCO3−]. GI symptoms were quantified every 30 min via questionnaire. Statistics used were pairwise comparisons between protocols; differences were interpreted in relation to smallest worthwhile changes for each variable. A likelihood of >75% was a substantial change.Results:[HCO3−] and pH were substantially greater than in placebo for all other ingestion protocols at almost all time points. When NaHCO3 was coingested with food, the greatest [HCO3−] (30.9 mmol/kg) and pH (7.49) and lowest incidence of GI symptoms were observed. The greatest incidence of GI side effects was observed 90 min after ingestion of 0.3 g/kg NaHCO3 solution.Conclusions:The changes in pH and [HCO3−] for the 8 NaHCO3-ingestion protocols were similar, so an optimal protocol cannot be recommended. However, the results suggest that NaHCO3 coingested with a high-carbohydrate meal should be taken 120–150 min before exercise to induce substantial blood alkalosis and reduce GI symptoms.


1998 ◽  
Vol 8 (4) ◽  
pp. 356-363 ◽  
Author(s):  
Ken van Someren ◽  
Kathy Fulcher ◽  
John McCarthy ◽  
Jonathan Moore ◽  
Gill Horgan ◽  
...  

This study examined the effect of sodium citrate ingestion on high-intensity cycling performance in repeated 45-s bouts. Twelve subjects (9 male and 3 female) ingested either a sodium citrate solution (0.3 g ⋅ kg−1 body mass [BM]) or a placebo 90 min prior to exercise. Postingestion blood HCO3 concentrations were significantly higher in the citrate trial (p < .01), but there was no difference in blood pH between trials. Peak power and total work significantly decreased over the five bouts (p < .05) and postexercise blood lactate concentrations significantly increased over the five bouts (p < 0.01), but there were no differences between trials. We conclude that sodium citrate ingestion (0.3 g ⋅ kg−1 BM) is not an effective ergogenic aid for high-intensity, intermittent exercise as simulated in this protocol.


Sign in / Sign up

Export Citation Format

Share Document