scholarly journals Training Load and Carbohydrate Periodization Practices of Elite Male Australian Football Players: Evidence of Fueling for the Work Required

2020 ◽  
Vol 30 (4) ◽  
pp. 280-286 ◽  
Author(s):  
Harry E. Routledge ◽  
Stuart Graham ◽  
Rocco Di Michele ◽  
Darren Burgess ◽  
Robert M. Erskine ◽  
...  

The authors aimed to quantify (a) the periodization of physical loading and daily carbohydrate (CHO) intake across an in-season weekly microcycle of Australian Football and (b) the quantity and source of CHO consumed during game play and training. Physical loading (via global positioning system technology) and daily CHO intake (via a combination of 24-hr recall, food diaries, and remote food photographic method) were assessed in 42 professional male players during two weekly microcycles comprising a home and away fixture. The players also reported the source and quantity of CHO consumed during all games (n = 22 games) and on the training session completed 4 days before each game (n = 22 sessions). The total distance was greater (p < .05) on game day (GD; 13 km) versus all training days. The total distance differed between training days, where GD-2 (8 km) was higher than GD-1, GD-3, and GD-4 (3.5, 0, and 7 km, respectively). The daily CHO intake was also different between training days, with reported intakes of 1.8, 1.4, 2.5, and 4.5 g/kg body mass on GD-4, GD-3, GD-2, and GD-1, respectively. The CHO intake was greater (p < .05) during games (59 ± 19 g) compared with training (1 ± 1 g), where in the former, 75% of the CHO consumed was from fluids as opposed to gels. Although the data suggest that Australian Football players practice elements of CHO periodization, the low absolute CHO intakes likely represent considerable underreporting in this population. Even when accounting for potential underreporting, the data also suggest Australian Football players underconsume CHO in relation to the physical demands of training and competition.

2017 ◽  
Vol 12 (6) ◽  
pp. 749-755 ◽  
Author(s):  
Nick B. Murray ◽  
Tim J. Gabbett ◽  
Andrew D. Townshend

Objectives:To investigate the relationship between the proportion of preseason training sessions completed and load and injury during the ensuing Australian Football League season.Design:Single-cohort, observational study.Methods:Forty-six elite male Australian football players from 1 club participated. Players were divided into 3 equal groups based on the amount of preseason training completed (high [HTL], >85% sessions completed; medium [MTL], 50–85% sessions completed; and low [LTL], <50% sessions completed). Global positioning system (GPS) technology was used to record training and game loads, with all injuries recorded and classified by club medical staff. Differences between groups were analyzed using a 2-way (group × training/competition phase) repeated-measures ANOVA, along with magnitude-based inferences. Injury incidence was expressed as injuries per 1000 h.Results:The HTL and MTL groups completed a greater proportion of in-season training sessions (81.1% and 74.2%) and matches (76.7% and 76.1%) than the LTL (56.9% and 52.7%) group. Total distance and player load were significantly greater during the first half of the in-season period for the HTL (P = .03, ES = 0.88) and MTL (P = .02, ES = 0.93) groups than the LTL group. The relative risk of injury for the LTL group (26.8/1000 h) was 1.9 times greater than that for the HTL group (14.2/1000 h) (χ2 = 3.48, df = 2, P = .17).Conclusions:Completing a greater proportion of preseason training resulted in higher training loads and greater participation in training and competition during the competitive phase of the season.


2020 ◽  
Vol 15 (9) ◽  
pp. 1281-1288
Author(s):  
Dean Ritchie ◽  
Justin Keogh ◽  
Steven Stern ◽  
Peter Reaburn ◽  
Fergus O’Connor ◽  
...  

Little is known about the effect of preceding endurance-exercise bouts on subsequent resistance-training (RT) performance in team-sport players. Purpose: To examine the effect of prior skills/endurance training and different recovery time periods on subsequent same-day RT performance in professional Australian football players. Methods: Sport-specific endurance-running loads (duration [in minutes], total distance [in meters], mean speed [in meters per minute], high-speed running >15 km·h−1, and relative high-speed running [>75% and >85% of maximal velocity]) were obtained for 46 professional Australian football players for each training session across an entire competitive season. RT was prescribed in 3 weekly mesocycles with tonnage (in kilograms) lifted recorded as RT performance. Endurance and RT sessions were interspersed by different recovery durations: ∼20 min and 1, 2, and 3 h. Fixed- and mixed-effect linear models assessed the influence of skills/endurance-running loads on RT performance. Models also accounted for season period (preseason vs in-season) and recovery duration between concurrent training bouts. Results: An increase in high-speed running and distance covered >75% and >85% of maximal velocity had the greatest reductions on RT performance. In-season total distance covered displayed greater negative effects on subsequent RT performance compared with preseason, while ∼20-min recovery between skills/endurance and RT was associated with greater reductions in RT performance, compared with 1-, 2-, and 3-h recovery. Conclusions: Sport-specific endurance-running loads negatively affect subsequent same-day RT performance, and this effect is greater in-season and with shorter recovery durations between bouts.


2016 ◽  
Vol 15 (2) ◽  
pp. 64-77 ◽  
Author(s):  
D. L. Carey ◽  
K. Ong ◽  
M. E. Morris ◽  
J. Crow ◽  
K. M. Crossley

Abstract The ability of machine learning techniques to predict athlete ratings of perceived exertion (RPE) was investigated in professional Australian football players. RPE is commonly used to quantifying internal training loads and manage injury risk in team sports. Data from global positioning systems, heart-rate monitors, accelerometers and wellness questionnaires were recorded for each training session (n=3398) from 45 professional Australian football players across a full season. A variety of modelling approaches were considered to investigate the ability of objective data to predict RPE. Models were compared using nested cross validation and root mean square error (RMSE) on RPE predictions. A random forest model using player normalised running and heart rate variables provided the most accurate predictions (RMSE ± SD = 0.96 ± 0.08 au). A simplification of the model using only total distance, distance covered at speeds between 18-24 km·h−1, and the product of total distance and mean speed provided similarly accurate predictions (RMSE ± SD = 1.09 ± 0.05 au), suggesting that running distances and speeds are the strongest predictors of RPE in Australian football players. The ability of non-linear machine learning models to accurately predict athlete RPE has applications in live player monitoring and training load planning.


2013 ◽  
Vol 8 (3) ◽  
pp. 312-318 ◽  
Author(s):  
Paul G. Montgomery ◽  
Will G. Hopkins

Australian Football is an intense team sport played over ~120 min on a weekly basis. To determine the effects of game and training load on muscle soreness and the time frame of soreness dissipation, 64 elite Australian Football players (age 23.8 ± 1.8 y, height 183.9 ± 3.8 cm, weight 83.2 ± 5.0 kg; mean ± SD) recorded perceptions of muscle soreness, game intensity, and training intensity on scales of 1–10 on most mornings for up to 3 competition seasons. Playing and training times were also recorded in minutes. Data were analyzed with a mixed linear model, and magnitudes of effects on soreness were evaluated by standardization. All effects had acceptably low uncertainty. Game and training-session loads were 790 ± 182 and 229 ± 98 intensity-minutes (mean ± SD), respectively. General muscle soreness was 4.6 ± 1.1 units on d 1 postgame and fell to 1.9 ± 1.0 by d 6. There was a small increase in general muscle soreness (0.22 ± 0.07–0.50 ± 0.13 units) in the 3 d after high-load games relative to low-load games. Other soreness responses showed similar timelines and magnitudes of change. Training sessions made only small contributions to soreness over the 3 d after each session. Practitioners should be aware of these responses when planning weekly training and recovery programs, as it appears that game-related soreness dissipates after 3 d regardless of game load and increased training loads in the following week produce only small increases in soreness.


2012 ◽  
Vol 7 (3) ◽  
pp. 271-276 ◽  
Author(s):  
Daniel Tan ◽  
Brian Dawson ◽  
Peter Peeling

Purpose:This study aimed to quantify the hemolytic responses of elite female football (soccer) players during a typical weekly training session.Methods:Ten elite female football players (7 field players [FPs] and 3 goalkeepers [GKs]) were recruited from the Australian National Women’s Premier League and asked to provide a venous blood sample 30 min before and at the immediate conclusion of a typical weekly training session. During this training session, the players’ movement patterns were monitored via a 5-Hz global positioning system. The blood samples collected during the training session were analyzed for iron status via serum ferritin (SF) analysis, and the hemolytic response to training, via serum free hemoglobin (Hb) and haptoglobin (Hp) measurement.Results:50% of the participants screened were found to have a compromised iron stores (SF <35 μg/L). Furthermore, the posttraining serum free Hb levels were significantly elevated (P = .011), and the serum Hp levels were significantly decreased (P = .005), with no significant differences recorded between the FPs and GKs. However, the overall distance covered and the movement speed were significantly greater in the FPs.Conclusions:The increases in free Hb and decreases in Hp levels provide evidence that a typical team-sport training session may result in significant hemolysis. This hemolysis may primarily be a result of running-based movements in FPs and/or the plyometric movements in GKs, such as diving and tackling.


Author(s):  
Igor Junio de Oliveira Custódio ◽  
Gibson Moreira Praça ◽  
Leandro Vinhas de Paula ◽  
Sarah da Glória Teles Bredt ◽  
Fabio Yuzo Nakamura ◽  
...  

This study aimed to analyze the intersession reliability of global positioning system (GPS-based) distances and accelerometer-based (acceleration) variables in small-sided soccer games (SSG) with and without the offside rule, as well as compare variables between the tasks. Twenty-four high-level U-17 soccer athletes played 3 versus 3 (plus goalkeepers) SSG in two formats (with and without the offside rule). SSG were performed on eight consecutive weeks (4 weeks for each group), twice a week. The physical demands were recorded using a GPS with an embedded triaxial accelerometer. GPS-based variables (total distance, average speed, and distances covered at different speeds) and accelerometer-based variables (Player Load™, root mean square of the acceleration recorded in each movement axis, and the root mean square of resultant acceleration) were calculated. Results showed that the inclusion of the offside rule reduced the total distance covered (large effect) and the distances covered at moderate speed zones (7–12.9 km/h – moderate effect; 13–17.9 km/h – large effect). In both SSG formats, GPS-based variables presented good to excellent reliability (intraclass correlation coefficients – ICC > 0.62) and accelerometer-based variables presented excellent reliability (ICC values > 0.89). Based on the results of this study, the offside rule decreases the physical demand of 3 versus 3 SSG and the physical demands required in these SSG present high intersession reliability.


2019 ◽  
Vol 31 (1) ◽  
pp. 85-90
Author(s):  
Heita Goto ◽  
James A. King

Purpose: The purposes of the present study were to examine high-intensity running distance during 6-a-side small-sided games (SSGs) and 11-a-side matches (11M) in youth soccer players using speed and metabolic power approaches and the magnitude of difference between the high-intensity running distance calculated with the 2 approaches. Method: A total of 11 outfield players (age = 16.3 [0.6] y) performed SSGs with 3 pitch sizes (small SSG [SSGS], medium SSG, and large SSG [SSGL]) and 11M. A Global Positioning System (15 Hz) was employed to calculate total distance covered, distance covered at a speed ≥4.3 m·s−1 (TS), and metabolic power of ≥20 W·kg−1 (TP). Results: The total distance covered increased from SSGS through to SSGL (P < .001) and was greater during 11M and SSGL compared with other SSGs (P < .01). TS and TP increased from SSGS (TS vs TP = 98 [55] vs 547 [181] m) through to SSGL (538 [167] vs 1050 [234] m; P < .001). TS and TP during 11M (370 [122] vs 869 [233] m) was greater than SSGS (P < .001 for both) and less than SSGL (P < .05 for both). The magnitude of difference between TS and TP (as a percentage) was lower with an increase in pitch size during SSGs and was greater in SSGS (615% [404%]; P < .001), medium SSG (195% [76%]; P < .05), and smaller in SSGL (102% [33%]; P < .01) compared with 11M (145% [53%]). Conclusion: SSGs can replicate the high-intensity demands of 11M and the speed approach underestimates the high-intensity demands of SSGs and 11M compared with the metabolic power approach.


2019 ◽  
Vol 14 (6) ◽  
pp. 829-840 ◽  
Author(s):  
Timothy J.H. Lathlean ◽  
Paul B. Gastin ◽  
Stuart V. Newstead ◽  
Caroline F. Finch

Purpose:To investigate associations between load (training and competition) and wellness in elite junior Australian Football players across 1 competitive season.Methods:A prospective cohort study was conducted during the 2014 playing season in 562 players from 9 teams. Players recorded their training and match intensities according to the session-rating-of-perceived-exertion (sRPE) method. Based on sRPE player loads, a number of load variables were quantified, including cumulative load and the change in load across different periods of time (including the acute-to-chronic load ratio). Wellness was quantified using a wellness index including sleep, fatigue, soreness, stress, and mood on a Likert scale from 1 to 5.Results:Players spent an average of 85 (21) min in each match and 65 (31) min per training session. Average match loads were 637 (232) arbitrary units, and average training loads were 352 (233) arbitrary units. Over the 24 wk of the 2014 season, overall wellness had a significant linear negative association with 1-wk load (B = −0.152; 95% confidence interval, −0.261 to −0.043;P = .006) and an inverseU-curve relationship with session load (B = −0.078; 95% confidence interval, 0.143 to 0.014;P = .018). Mood, stress, and soreness were all found to have associations with load.Conclusions:This study demonstrates that load (within a session and across the week) is important in managing the wellness of elite junior Australian Football players. Quantifying loads and wellness at this level will help optimize player management and has the potential to reduce the risk of adverse events such as injury.


2015 ◽  
Vol 47 (1) ◽  
pp. 179-188 ◽  
Author(s):  
Javier Mallo ◽  
Esteban Mena ◽  
Fabio Nevado ◽  
Víctor Paredes

AbstractThe aim of this study was to examine the physical demands imposed on professional soccer players during 11-a-side friendly matches in relation to their playing position, using global positioning system (GPS) technology. One hundred and eleven match performances of a Spanish “La Liga” team during the 2010-11 and 2011-12 pre-seasons were selected for analysis. The activities of the players were monitored using GPS technology with a sampling frequency of 1 Hz. Total distance covered, distance in different speed categories, accelerations, and heart rate responses were analyzed in relation to five different playing positions: central defenders (n=23), full-backs (n=20), central midfielders (n=22), wide midfielders (n=26), and forwards (n=20). Distance covered during a match averaged 10.8 km, with wide and central midfielders covering the greatest total distance. Specifically, wide midfielders covered the greatest distances by very high-intensity running (>19.8 km·h-1) and central midfielders by jogging and running (7.2-19.7 km·h-1). On the other hand, central defenders covered the least total distance and at high intensity, although carried out more (p<0.05-0.01) accelerations than forwards, wide midfielders, and fullbacks. The work rate profile of the players obtained with the GPS was very similar to that obtained with semi-automatic image technologies. However, when comparing results from this study with data available in the literature, important differences were detected in the amount of distance covered by sprinting, which suggests that caution should be taken when comparing data obtained with the GPS with other motion analysis systems, especially regarding high-intensity activities.


Author(s):  
Sérgio Matos ◽  
Filipe Manuel Clemente ◽  
Rui Silva ◽  
José María Cancela Carral

The purpose of this study was to compare the variations of weekly workload indices of internal and external load measures across the three weeks prior to injury occurrences in trail runners. Twenty-five trail runners (age: 36.23 ± 8.30 years old; body mass: 67.24 ± 5.97 kg; height: 172.12 ± 5.12 cm) were monitored daily for 52 weeks using global positioning systems (GPSs) to determine the total distance covered. Additionally, a rate of perceived exertion (RPE) scale was applied to determine session-RPE (sRPE: RPE multiplied by training time). The accumulated load (AL), acute: chronic workload ratio (ACWR), training monotony (TM), and training strain (TS) indices were calculated weekly for each runner. During the period of analysis, the injury occurrences were recorded. The differences were observed in AL and ACWR for sRPE and training time were significantly greater during the injury week when compared to the previous weeks. Similar evidence was found in TM and TS indices for sRPE, training time, and total distance. Furthermore, no meaningful differences were observed in AL and ACWR for total distance in the weeks prior to injury occurrence. Nevertheless, significant between-subjects variability was found, and this should be carefully considered. For that reason, an individualized analysis of the workload dynamics is recommended, avoiding greater spikes in load by aiming to keep a progressive increment of load without consequences for injury risk.


Sign in / Sign up

Export Citation Format

Share Document