Effect of Dark Chocolate Supplementation on Tissue Oxygenation, Metabolism, and Performance in Trained Cyclists at Altitude

2020 ◽  
Vol 30 (6) ◽  
pp. 420-426
Author(s):  
Keely Shaw ◽  
Jyotpal Singh ◽  
Luke Sirant ◽  
J. Patrick Neary ◽  
Philip D. Chilibeck

Dark chocolate (DC) is high in flavonoids and has been shown to increase nitric oxide in the blood. Increased nitric oxide has the potential to improve delivery of oxygen to muscle, especially in hypoxic conditions, such as altitude. Our aim was to assess the impact of DC supplementation on cycling performance at altitude. Twelve healthy, trained cyclists (n = 2 females, n = 10 males; age = 35 [12] years; height = 177 [7] cm; mass = 75.2 [11.0] kg; VO2max = 55 [6] ml·kg−1·min−1) were randomized to supplement with 60 g of DC or placebo twice per day for 14 days in a double-blind crossover study. After the 2 weeks of supplementation, the participants attended a laboratory session in which they consumed 120 g of DC or placebo and then cycled for 90 min at 50% peak power output, followed immediately by a 10-km time trial (TT) at simulated altitude (15% O2). The plasma concentration of blood glucose and lactate were measured before and at 15, 30, 60, and 90 min during the steady-state exercise and post TT, while muscular and prefrontal cortex oxygenation was measured continuously throughout exercise using near-infrared spectroscopy. DC resulted in a higher concentration of blood glucose (5.5 [0.5] vs. 5.3 [0.9] mmol/L) throughout the trial and lower blood lactate concentration following the TT (7.7 [1.92] vs. 10.0 [4.6] mmol/L) compared with the placebo. DC had no effect on the TT performance (19.04 [2.16] vs. 19.21 ± 1.96 min) or oxygenation status in either the prefrontal cortex or muscle. The authors conclude that, although it provided some metabolic benefit, DC is not effective as an ergogenic aid during TT cycling at simulated altitude.

2014 ◽  
Vol 9 (5) ◽  
pp. 857-862 ◽  
Author(s):  
Paul S.R. Goods ◽  
Brian T. Dawson ◽  
Grant J. Landers ◽  
Christopher J. Gore ◽  
Peter Peeling

Purpose:This study aimed to assess the impact of 3 heights of simulated altitude exposure on repeat-sprint performance in teamsport athletes.Methods:Ten trained male team-sport athletes completed 3 sets of repeated sprints (9 × 4 s) on a nonmotorized treadmill at sea level and at simulated altitudes of 2000, 3000, and 4000 m. Participants completed 4 trials in a random order over 4 wk, with mean power output (MPO), peak power output (PPO), blood lactate concentration (Bla), and oxygen saturation (SaO2) recorded after each set.Results:Each increase in simulated altitude corresponded with a significant decrease in SaO2. Total work across all sets was highest at sea level and correspondingly lower at each successive altitude (P < .05; sea level < 2000 m < 3000 m < 4000 m). In the first set, MPO was reduced only at 4000 m, but for subsequent sets, decreases in MPO were observed at all altitudes (P < .05; 2000 m < 3000 m < 4000 m). PPO was maintained in all sets except for set 3 at 4000 m (P < .05; vs sea level and 2000 m). BLa levels were highest at 4000 m and significantly greater (P < .05) than at sea level after all sets.Conclusions:These results suggest that “higher may not be better,” as a simulated altitude of 4000 m may potentially blunt absolute training quality. Therefore, it is recommended that a moderate simulated altitude (2000–3000 m) be employed when implementing intermittent hypoxic repeat-sprint training for team-sport athletes.


2006 ◽  
Vol 31 (5) ◽  
pp. 612-620 ◽  
Author(s):  
Lixin Wang ◽  
Takahiro Yoshikawa ◽  
Taketaka Hara ◽  
Hayato Nakao ◽  
Takashi Suzuki ◽  
...  

Various near-infrared spectroscopy (NIRS) variables have been used to estimate muscle lactate threshold (LT), but no study has determined which common NIRS variable best reflects muscle estimated LT. Establishing the inflection point of 2 regression lines for deoxyhaemoglobin (ΔHHbi.p.), oxyhaemoglobin (ΔO2Hbi.p.), and tissue oxygenation index (TOIi.p.), as well as for blood lactate concentration, we then investigated the relationships between NIRS variables and ventilatory threshold (VT), LT, or maximal tissue hemoglobin index (nTHImax) during incremental cycling exercise. ΔHHbi.p. and TOIi.p. could be determined for all 15 subjects, but ΔO2Hbi.p. was determined for only 11 subjects. The mean absolute values for the 2 measurable slopes of the 2 continuous linear regression lines exhibited increased changes in 3 NIRS variables. The workload and VO2 at ΔO2Hbi.p. and nTHImax were greater than those at VT, LT, ΔHHbi.p., and TOIi.p.. For workload and VO2, ΔHHbi.p. was correlated with VT and LT, whereas ΔO2Hbi.p. was correlated with nTHImax, and TOIi.p. with VT and nTHImax. These findings indicate that ΔO2Hb strongly corresponds with local perfusion, and TOI corresponds with both local perfusion and deoxygenation, but that ΔHHb can exactly determine deoxygenation changes and reflect O2 metabolic dynamics. The finding of strongest correlations between ΔHHb and VT or LT indicates that ΔHHb is the best variable for muscle LT estimation.


1989 ◽  
Vol 67 (2) ◽  
pp. 756-764 ◽  
Author(s):  
S. G. Gregg ◽  
R. S. Mazzeo ◽  
T. F. Budinger ◽  
G. A. Brooks

We evaluated whether elevated blood lactate concentration during exercise in anemia is the result of elevated production or reduced clearance. Female Sprague-Dawley rats were made acutely anemic by exchange transfusion of plasma for whole blood. Hemoglobin and hematocrit were reduced 33%, to 8.6 +/- 0.4 mg/dl and 26.5 +/- 1.1%, respectively. Blood lactate kinetics were studied by primed continuous infusion of [U-14C]lactate. Blood flow distribution during rest and exercise was determined from injection of 153Gd- and 113Sn-labeled microspheres. Resting blood glucose (5.1 +/- 0.2 mM) and lactate (1.9 +/- 0.02 mM) concentrations were not different in anemic animals. However, during exercise blood glucose was lower in anemic animals (4.0 +/- 0.2 vs. 4.6 +/- 0.1 mM) and lactate was higher (6.1 +/- 0.4 vs. 2.3 +/- 0.5 mM). Blood lactate disposal rates (turnover measured with recyclable tracer, Ri) were not different at rest and averaged 136 +/- 5.8 mumol.kg-1.min-1. Ri was significantly elevated in both control (260.9 +/- 7.1 mumol.kg-1.min-1) and anemic animals (372.6 +/- 8.6) during exercise. Metabolic clearance rate (MCR = Ri/[lactate]) did not differ during rest (151 +/- 8.2 ml.kg-1.min-1); MCR was reduced more by exercise in anemic animals (64.3 +/- 3.8) than in controls (129.2 +/- 4.1). Plasma catecholamine levels were not different in resting rats, with pooled mean values of 0.45 +/- 0.1 and 0.48 +/- 0.1 ng/ml for epinephrine (E) and norepinephrine (NE), respectively.(ABSTRACT TRUNCATED AT 250 WORDS)


1990 ◽  
Vol 258 (1) ◽  
pp. E203-E211 ◽  
Author(s):  
L. P. Turcotte ◽  
A. S. Rovner ◽  
R. R. Roark ◽  
G. A. Brooks

To evaluate the role played by gluconeogenesis in blood glucose homeostasis, female Sprague-Dawley rats were injected with mercaptopicolinic acid (MPA), a gluconeogenic inhibitor. Glucose kinetics were assessed by primed, continuous infusion of [U-14C]- and [6(-3)H]glucose via an indwelling jugular catheter at rest and during submaximal exercise at 13.4 m/min on level grade. Blood samples were taken from carotid catheters and analyzed for glucose and lactate concentrations and specific activities. Tissue glycogen samples were obtained from rats after exercise as well as from unexercised animals. When compared with the sham-injected animals, MPA-treated animals had 22% lower (5.92 +/- 0.36 vs. 7.62 +/- 0.21 mM) and 44% higher (1.90 +/- 0.11 vs. 1.32 +/- 0.09 mM) resting arterial glucose and lactate concentrations, respectively. Resting glucose appearance (Ra) rates were 20% lower in the MPA-treated animals (57.2 +/- 7.5 mumol.kg-1.min-1) than in the sham-injected animals (71.1 +/- 12.1 mumol.kg-1.min-1). During exercise, Ra increased to 174.7 +/- 32.8 mumol.kg-1.min-1 in sham-injected animals. In the MPA-treated animals, there was a 35% increase during the first 15 min of exercise, followed by a decrease to the resting values. MPA-treated animals had no measurable glucose recycling at rest or during exercise. Exercise decreased blood glucose concentration (35%) and increased blood lactate concentration (160%) in the MPA-treated animals. Exercising sham-injected animals had increased blood glucose (9.8%) but no change in blood lactate concentration. Moderate depletions in liver and skeletal muscle glycogen contents were observed after exercise.(ABSTRACT TRUNCATED AT 250 WORDS)


2009 ◽  
Vol 107 (2) ◽  
pp. 460-470 ◽  
Author(s):  
Martin Buchheit ◽  
Paul B. Laursen ◽  
Said Ahmaidi

The effect of prior exercise on pulmonary O2 uptake (V̇o2 p) and estimated muscle capillary blood flow (Q̇m) kinetics during moderate-intensity, field-based running was examined in 14 young adult men, presenting with either moderately fast (16 s < τV̇o2 p < 30 s; MFK) or very fast V̇o2 p kinetics (τV̇o2 p < 16 s; VFK) (i.e., primary time constant, τV̇o2 p). On four occasions, participants completed a square-wave protocol involving two bouts of running at 90–95% of estimated lactate threshold (Mod1 and Mod2), separated by 2 min of repeated supramaximal sprinting. V̇o2 p was measured breath by breath, heart rate (HR) beat to beat, and vastus lateralis oxygenation {deoxy-hemoglobin/myoglobin concentration (deoxy-[Hb+Mb])} using near-infrared spectroscopy. Mean response time of Q̇m (Q̇m MRT) was estimated by rearranging the Fick equation, using V̇o2 p and deoxy-[Hb+Mb] as proxies of muscle O2 uptake (V̇o2) and arteriovenous difference, respectively. HR, blood lactate concentration, total hemoglobin, and Q̇m were elevated before Mod2 compared with Mod1 (all P < 0.05). τV̇o2 p was shorter in VFK compared with MFK during Mod1 (13.1 ± 1.8 vs. 21.0 ± 2.5 s, P < 0.01), but not in Mod2 (12.9 ± 1.5 vs. 13.7 ± 3.8 s, P = 1.0). Q̇m MRT was shorter in VFK compared with MFK in Mod1 (8.8 ± 1.9 vs. 17.0 ± 3.4 s, P < 0.01), but not in Mod2 (10.1 ± 1.8 vs. 10.5 ± 3.5 s, P = 1.0). During Mod2, HR kinetics were slowed, whereas mean deoxy-[Hb+Mb] response time was unchanged. The difference in τV̇o2 p between Mod1 and Mod2 was related to Q̇m MRT measured at Mod1 ( r = 0.71, P < 0.01). Present results suggest that local O2 delivery (i.e., Q̇m) may be a factor contributing to the V̇o2 kinetic during the onset of moderate-intensity, field-based running exercise, at least in subjects exhibiting moderately fast V̇o2 kinetics.


2015 ◽  
Vol 10 (1) ◽  
pp. 41-46
Author(s):  
Mădălina DUŢU ◽  
◽  
Voicu BOSCAIU ◽  
Dan CORNECI ◽  
◽  
...  

Backgrounds. PIRO model is created based on preexisting comorbidity (predisposition) and the nature and extent of infection, the characteristics of the host response and organ dysfunction results. The aim of this study was to assess the impact of various clinical factors on prognosis in septic patients in intensive care. Results. There were 152 patients included in the study (51.9% male, mean age 69.9 years, 77.6% mortality). The mean age of male survivors was significantly lower (p = 0.002) than that of dead males: 61 to 71 years. Charlson comorbidity index was significantly higher in patients who died (p = 0.043). Mortality cases of nosocomial acquired infections were higher compared to that of community acquired. The incidence of death was lower at patients with local infection (72% vs 87%), the difference being statistically significant (p = 0.044), OR = 0.385 (CI = 0161-0923). Mortality rate was significantly higher in lung and abdominal sepsis cases (78.1% and 73.9%) compared to the urinary sepsis: 55.5%. Gram negative infections caused higher mortality than Gram positive (80% versus 76.9%), with maximum value for Gram negative associated with fungus cases (83.3%). Death rate increased significantly with the number of organ dysfunction (p < 0.001) and decreased with lower blood lactate concentration at 48 hours (p = 0.044). Hypoxemia index < 100 correlated to death rate and hypoxemia index value > 250 measured at 72 hours is positive correlated with survival. Conclusions. Charlson comorbidity index is a good risk prognostic factor and could be attached to P component and the infection extension proved to be a good prognostic factor for I component. The number of organs dysfunction at admission time and the amount of lactate at 48 hours may be indicators belonging to O component.


Author(s):  
Hui Li ◽  
Dandan Wu ◽  
Jinfeng Yang ◽  
Jiutong Luo ◽  
Sha Xie ◽  
...  

This study aims to examine the impact of tablet use on preschoolers&rsquo; executive function during the Dimensional Change Card Sort Task (DCCS) task using the functional near-infrared spectroscopy (fNIRS). Altogether 38 Chinese preschoolers (Mage = 5.0 years, SD = 0.69 years, 17 girls) completed the tasks before the COVID-19 lockdown. Eight children never used tablets, while 16 children were diagnosed as the &lsquo;heavy-user'. The results indicated that: (1) the 'Non-user' outperformed the 'Heavy-user' with a significantly higher correct rate in the DCCS task; (2) the two groups differed significantly in the activation of the prefrontal cortex (BA 9): the 'Non-user' pattern is normal and healthy, whereas the 'Heavy-user' pattern is not normal and needs further exploration.


2021 ◽  
Author(s):  
Jiani Li ◽  
MACRINA DIEFFENBACH ◽  
MATTHEW D. LIEBERMAN

Prevalent, automatic, and powerful, emotional experience forms an integral part of human life. Despite numerous studies pointing at the impact of emotion in shaping one’s interpretation of situation and guiding action, emotional experience has not been studied extensively due to its idiosyncratic nature. However, advances in neuroimaging techniques and statistical analysis methods enabled more rigorous investigation of subjective experience, one of which is neural synchrony. Here we sought to examine if neural synchrony in regions within the default mode network, including medial prefrontal cortex (mPFC), bilateral temporoparietal junctions (TPJ) and inferior parietal lobules (IPL), underlies shared emotional experience. A hundred and four participants watched political videos while being scanned by Functional Near-Infrared Spectroscopy (fNIRS) and rated their emotional experience afterwards. Although initial Inter- Subject Correlation Analysis and Inter-Subject Representational Similarity Analysis did not yield significant findings, we addressed limitations of both approaches – loss of dimensionality and unequal comparisons of dyads – by combining them with k-means clustering. This improved version of analysis revealed that subjects who reported more similarly negative, but not positive, emotional experiences exhibited more synchronized neural fluctuations in mPFC. The results suggest that neural synchrony in mPFC may be driven primarily by negative sentiments and serve as a neural signature for subjective emotional experience.


2020 ◽  
Vol 15 (8) ◽  
pp. 1109-1116
Author(s):  
Mathias T. Vangsoe ◽  
Jonas K. Nielsen ◽  
Carl D. Paton

Purpose: Ischemic preconditioning (IPC) and postactivation potentiation (PAP) are warm-up strategies proposed to improve high-intensity sporting performance. However, only few studies have investigated the benefits of these strategies compared with an appropriate control (CON) or an athlete-selected (SELF) warm-up protocol. Therefore, this study examined the effects of 4 different warm-up routines on 1-km time-trial (TT) performance with competitive cyclists. Methods: In a randomized crossover study, 12 well-trained cyclists (age 32 [10] y, mass 77.7 [4.6] kg, peak power output 1141 [61] W) performed 4 different warm-up strategies—(CON) 17 minutes CON only, (SELF) a self-determined warm-up, (IPC) IPC + CON, or (PAP) CON + PAP—prior to completing a maximal-effort 1-km TT. Performance time and power, quadriceps electromyograms, muscle oxygen saturation (SmO2), and blood lactate were measured to determine differences between trials. Results: There were no significant differences (P > .05) in 1-km performance time between CON (76.9 [5.2] s), SELF (77.3 [6.0] s), IPC (77.0 [5.5] s), or PAP (77.3 [5.9] s) protocols. Furthermore, there were no significant differences in mean or peak power output between trials. Finally, electromyogram activity, SmO2, and recovery blood lactate concentration were not different between conditions. Conclusions: Adding IPC or PAP protocols to a short CON warm-up appears to provide no additional benefit to 1-km TT performance with well-trained cyclists and is therefore not recommended. Furthermore, additional IPC and PAP protocols had no effect on electromyograms and SmO2 values during the TT or peak lactate concentration during recovery.


1980 ◽  
Vol 239 (4) ◽  
pp. E287-E287 ◽  

Substrate-turnover relationships were determined in unanesthetized healthy fasted neonatal dogs during the first day of life. Pups were born at term by cesarean section to starved or control mothers. Pups born to starved mothers developed significantly lower blood glucose concentrations during neonatal fasting. In all pups, blood glucose concentrations during neonatal fasting. In all pups, blood glucose concentrations correlated to glucose utilization (r = 0.462, P < 0.001). Blood lactate concentration was significantly related to its turnover. The relationship between lactate turnover and lactate carbon appearance into glucose was significantly correlated. However, the relationship between lactate concentration and its carbon incorporation into glucose was only significant at 24 h of age in pups born to starved mothers. These data suggest that the neonatal dog is capable of regulating its glucose and lactate utilization by the availability of substrate. Because peripheral insulin levels correlated poorly to fasting blood glucose and glucose turnover; it is doubtful whether insulin secretion plays a significant role in fasting neonatal canine glucose homeostasis.


Sign in / Sign up

Export Citation Format

Share Document