Dependence of the Nature of the Pedaling Activity on Maximal Aerobic Power in Cycling

2017 ◽  
Vol 12 (1) ◽  
pp. 44-49 ◽  
Author(s):  
Anthony Bouillod ◽  
Julien Pinot ◽  
Flavien Soenen ◽  
Theo Ouvrard ◽  
Frederic Grappe

Purpose:To analyze the effect of the pedaling activity in different 4-min time trials (TT4s) (laboratory and field conditions) and compare TT4 and maximal aerobic power (MAP) determined from the classical incremental exercise test in laboratory. It was hypothesized that the exercises performed on the field would determine higher physical (power output [PO]) and mental involvements due to different environmental conditions.Methods:Sixteen male cyclists underwent an incremental test to exhaustion and 3 TT4s under different conditions: cycle ergometer (CE), level ground (LG), and uphill (UP).Results:Correlation was observed for PO with a trivial effect size and narrow limits of agreement between MAP and CE TT4 (r = .96, P < .001). The comparison between the CE, LG, and UP tests indicates that PO was significantly higher in UP than in CE (+8.0%, P < .001) and LG (+11.0%, P < .001).Conclusions:The results suggest that PO depends on the nature of the pedaling activity. Moreover, PO under CE TT4 is a relevant predictor of MAP. It seems important to measure MAP by taking into account the cycling conditions, considering that coaches and scientists use this parameter to assess the aerobic potential of athletes and determine the exercise intensities useful for monitoring adaptation to training.

2011 ◽  
Vol 43 (Suppl 1) ◽  
pp. 82
Author(s):  
Andrew W. Subudhi ◽  
J Tod Olin ◽  
Andrew C. Dimmen ◽  
Bengt Kayser ◽  
Robert C. Roach

2018 ◽  
Vol 13 (9) ◽  
pp. 1243-1249 ◽  
Author(s):  
Cyril Granier ◽  
Chris R. Abbiss ◽  
Anaël Aubry ◽  
Yvon Vauchez ◽  
Sylvain Dorel ◽  
...  

Purpose: To characterize the physiological profiles of elite cross-country mountain-bike (XCO-MTB) cyclists and to examine their pacing and power-output (PO) distribution during international races. Methods: Over 2 competitive seasons, 8 male XCO-MTB cyclists (VO2max 79.9 [5.2] mL·min−1·kg−1, maximal aerobic power [MAP] 411 [18] W and 6.3 [0.4] W·kg−1) regularly undertook incremental tests to assess their PO and heart rate (HR) at first and second ventilatory thresholds (VT1 and VT2) and at VO2max. During the same period, their PO, HR, speed, and cadence were recorded over 13 international races (total of 30 recorded files). Results: Mean PO, speed, cadence, and HR during the races were 283 (22) W (4.31 [0.32] W·kg−1, 68% [5%] MAP), 19.7 (2.1) km·h−1, 68 (8) rpm, and 172 (11) beats·min−1 (91% [2%] HRmax), respectively. The average times spent below 10% of MAP, between 10% of MAP and VT1, between VT1 and VT2, between VT2 and MAP, and above MAP were 25% (5%), 21% (4%), 13% (3%), 16% (3%), and 26% (5%), respectively. Both speed and PO decreased from the start loop to lap 1 before stabilizing until the end of the race.Conclusions: Elite off-road cyclists demonstrated typical values of world-class endurance cyclists with an excellent power-to-mass ratio. This study demonstrated that XCO-MTB races are performed at higher intensities than reported in previous research and are characterized by a fast start followed by an even pace.


2012 ◽  
Vol 7 (4) ◽  
pp. 397-400 ◽  
Author(s):  
Iñigo Mujika

Age-related fitness declines in athletes can be due to both aging and detraining. Very little is known about the physiological and performance decline of professional cyclists after retirement from competition. To gain some insight into the aging and detraining process of elite cyclists, 5-time Tour de France winner and Olympic Champion Miguel Indurain performed a progressive cycle-ergometer test to exhaustion 14 y after retirement from professional cycling (age 46 y, body mass 92.2 kg). His maximal values were oxygen uptake 5.29 L/min (57.4 mL · kg−1 · min−1), aerobic power output 450 W (4.88 W/kg), heart rate 191 beats/min, blood lactate 11.2 mM. Values at the individual lactate threshold (ILT): 4.28 L/min (46.4 mL · kg−1 · min−1), 329 W (3.57 W/kg), 159 beats/min, 2.4 mM. Values at the 4-mM onset of blood lactate accumulation (OBLA): 4.68 L/min (50.8 mL · kg−1 · min−1), 369 W (4.00 W/kg), 170 beats/min. Average cycling gross efficiency between 100 and 350 W was 20.1%, with a peak value of 22.3% at 350 W. Delta efficiency was 27.04%. Absolute maximal oxygen uptake and aerobic power output declined by 12.4% and 15.2% per decade, whereas power output at ILT and OBLA declined by 19.8% and 19.2%. Larger declines in maximal and submaximal values relative to body mass (19.4–26.1%) indicate that body composition changed more than aerobic characteristics. Nevertheless, Indurain’s absolute maximal and submaximal oxygen uptake and power output still compare favorably with those exhibited by active professional cyclists.


2014 ◽  
Vol 9 (4) ◽  
pp. 732-734 ◽  
Author(s):  
Naroa Etxebarria ◽  
Shaun D’Auria ◽  
Judith M. Anson ◽  
David B. Pyne ◽  
Richard A. Ferguson

Purpose:The patterns of power output in the ~1-h cycle section of Olympic-distance triathlon races are not well documented. Here the authors establish a typical cycling-race profile derived from several International Triathlon Union elite-level draftinglegal triathlon races.Methods:The authors collated 12 different race power profiles from elite male triathletes (N = 5, age 25 ± 5 y, body mass 65.5 ± 5.6 kg; mean ± SD) during 7 international races. Power output was recorded using SRM cranks and analyzed with proprietary software.Results:The mean power output was 252 ± 33 W, or 3.9 ± 0.5 W/kg in relative terms, with a coefficient of variation of 71% ± 13%. Normalized power (power output an athlete could sustain if intensity were maintained constant without any variability) for the entire cycle section was 291 ± 29 W, or 40 ± 13 W higher than the actual mean power output. There were 34 ± 14 peaks of power output above 600 W and ~18% time spent at >100% of maximal aerobic power.Conclusion:Cycling during Olympic-distance triathlon, characterized by frequent and large power variations including repeat supramaximal efforts, equates to a higher workload than cycling at constant power.


2016 ◽  
Vol 5 (4) ◽  
pp. 456-461
Author(s):  
Chien-Liang Chen ◽  
Nan-Ying Yu ◽  
Jing-Shia Tang ◽  
Shao-Hsia Chang ◽  
Yea-Ru Yang ◽  
...  

2002 ◽  
Vol 282 (4) ◽  
pp. R1063-R1069 ◽  
Author(s):  
Daniel S. Moran ◽  
W. Larry Kenney ◽  
Jane M. Pierzga ◽  
Kent B. Pandolf

The purpose of this study was to evaluate the physiological strain index (PSI) for different age groups during exercise-heat stress (EHS). PSI was applied to three different databases. First, from young and middle-age men (21 ± 2 and 46 ± 5 yr, respectively) matched ( n = 9 each, P > 0.05) for maximal aerobic power. Subjects were heat acclimated by daily treadmill walking for two 50-min bouts separated by 10-min rest for 10 days in a hot-dry environment [49°C, 20% relative humidity (RH)]. The second database involved a group ( n = 8) of young (YA) and a group ( n = 7) of older (OA) men (26 ± 1 and 69 ± 1 yr, respectively) who underwent 16 wk of aerobic training and two control groups ( n = 7 each) who were matched for age to YA and OA. These four groups performed EHS at 36°C, 40% RH on a cycle ergometer for 60 min at 60% maximal aerobic power before and after training. The third database was obtained from three groups of postmenopausal women and a group of 10 men. Two groups of women ( n = 8 each) were undergoing hormone replacement therapy, estrogen or estrogen plus progesterone, and the third group ( n = 9) received no hormone replacement. Subjects were over 50 yr and performed the same EHS: exercising at 36°C, 40% RH on a cycle ergometer for 60 min. PSI assessed the strain for all three databases and reported differences were significant at P < 0.05. This index rated the strain in rank order, whereas the postacclimation and posttraining groups were assessed as having less strain than the preacclimation and pretraining groups. Furthermore, middle-aged women on estrogen replacement therapy had less strain than estrogen + progesterone and no hormone therapy. PSI evaluation was extended for men and women of different ages (50–70 yr) during acute EHS, heat acclimation, after aerobic training, and inclusive of women undergoing hormone replacement therapy.


Author(s):  
Arnaud Hays ◽  
Caroline Nicol ◽  
Denis Bertin ◽  
Romain Hardouin ◽  
Jeanick Brisswalter

Objectives: To identify relevant physiological, mechanical, and strength indices to improve the evaluation of elite mountain bike riders competing in the current Cross-Country Olympic (XCO) format. Methods: Considering the evolution of the XCO race format over the last decade, the present testing protocol adopted a battery of complementary laboratory cycling tests: a maximal aerobic consumption, a force–velocity test, and a multi-short-sprint test. A group of 33 elite-level XCO riders completed the entire testing protocol and at least 5 international competitions. Results: Very large correlations were found between the XCO performance and maximal aerobic power output (r = .78; P < .05), power at the second ventilation threshold (r = .83; P < .05), maximal pedaling force (r = .77; P < .05), and maximum power in the sixth sprint (r = .87; P < .05) of the multi-short-sprint test. A multiple regression model revealed that the normalized XCO performance was predicted at 89.2% (F3,29 = 89.507; r = .95; P < .001) by maximum power in the sixth sprint (β = 0.602; P < .001), maximal pedaling rate (β = 0.309; P < .001), and relative maximal aerobic power output (β = 0.329; P < .001). Discussion: Confirming our expectations, the current XCO performance was highly correlated with a series of physiological and mechanical parameters reflecting the high level of acyclic and intermittent solicitation of both aerobic and anaerobic metabolic pathways and the required qualities of maximal force and velocity. Conclusion: The combination of physiological, mechanical, and strength characteristics may thus improve the prediction of elite XCO cyclists’ performance. It seems of interest to evaluate the ability to repeatedly produce brief intensive efforts with short active recovery periods.


2015 ◽  
Vol 10 (3) ◽  
pp. 278-284 ◽  
Author(s):  
Avish P. Sharma ◽  
Adrian D. Elliott ◽  
David J. Bentley

Context:Road cycle racing is characterized by significant variability in exercise intensity. Existing protocols attempting to model this aspect display inadequate variation in power output. Furthermore, the reliability of protocols representative of road cycle racing is not well known. There are also minimal data regarding the physiological parameters that best predict performance during variable-power cycling.Purpose:To determine the reliability of mean power output during a new test of variable-power cycling and establish the relationship between physiological attributes typically measured during an incremental exercise test and performance during the variable-power cycling test (VCT).Methods:Fifteen trained male cyclists (mean ± SD age 33 ± 6.5 y, VO2max 57.9 ± 4.8 mL · kg−1 · min−1) performed an incremental exercise test to exhaustion for determination of physiological attributes, 2 VCTs (plus familiarization), and a 30-km time trial. The VCT was modeled on data from elite men’s road racing and included significant variation in power output.Results:Mean power output during the VCT showed good reliability (r = .92, CV% = 1.98). Relative power during the self-paced sections of the VCT was most correlated with maximal aerobic power (r = .79) and power at the second ventilatory threshold (r = .69). Blood lactate concentration showed poor reliability between trials (CV% = 13.93%).Conclusions:This study has demonstrated a new reliable protocol simulating the stochastic nature of road cycling races. Further research is needed to determine which factors predict performance during variable-power cycling and the validity of the test in monitoring longitudinal changes in cycling performance.


Sign in / Sign up

Export Citation Format

Share Document