Improvement of Sprint Triathlon Performance in Trained Athletes With Positive Swim Pacing

2016 ◽  
Vol 11 (8) ◽  
pp. 1024-1028 ◽  
Author(s):  
Sam S.X. Wu ◽  
Jeremiah J. Peiffer ◽  
Peter Peeling ◽  
Jeanick Brisswalter ◽  
Wing Y. Lau ◽  
...  

Purpose:To investigate the effect of 3 swim-pacing profiles on subsequent performance during a sprint-distance triathlon (SDT). Methods:Nine competitive/trained male triathletes completed 5 experimental sessions including a graded running exhaustion test, a 750-m swim time trial (STT), and 3 SDTs. The swim times of the 3 SDTs were matched, but pacing was manipulated to induce positive (ie, speed gradually decreasing from 92% to 73% STT), negative (ie, speed gradually increasing from 73% to 92% STT), or even pacing (constant 82.5% STT). The remaining disciplines were completed at a self-selected maximal pace. Speed over the entire triathlon, power output during the cycle discipline, rating of perceived exertion (RPE) for each discipline, and heart rate during the cycle and run were determined. Results:Faster cycle and overall triathlon times were achieved with positive swim pacing (30.5 ± 1.8 and 65.9 ± 4.0 min, respectively), as compared with the even (31.4 ± 1.0 min, P = .018 and 67.7 ± 3.9 min, P = .034, effect size [ES] = 0.46, respectively) and negative (31.8 ± 1.6 min, P = .011 and 67.3 ± 3.7 min, P = .041, ES = 0.36, respectively) pacing. Positive swim pacing elicited a lower RPE (9 ± 2) than negative swim pacing (11 ± 2, P = .014). No differences were observed in the other measured variables. Conclusions:A positive swim pacing may improve overall SDT performance and should be considered by both elite and age-group athletes during racing.

2009 ◽  
Vol 19 (4) ◽  
pp. 400-409 ◽  
Author(s):  
Milou Beelen ◽  
Jort Berghuis ◽  
Ben Bonaparte ◽  
Sam B. Ballak ◽  
Asker E. Jeukendrup ◽  
...  

It has been reported previously that mouth rinsing with a carbohydrate-containing solution can improve cycling performance. The purpose of the current study was to investigate the impact of such a carbohydrate mouth rinse on exercise performance during a simulated time trial in a more practical, postprandial setting. Fourteen male endurance-trained athletes were selected to perform 2 exercise tests in the morning after consuming a standardized breakfast. They performed an ~1-hr time trial on a cycle ergometer while rinsing their mouths with either a 6.4% maltodextrin solution (CHO) or water (PLA) after every 12.5% of the set amount of work. Borg’s rating of perceived exertion (RPE) was assessed after every 25% of the set amount of work, and power output and heart rate were recorded continuously throughout the test. Performance time did not differ between treatments and averaged 68.14 ± 1.14 and 67.52 ± 1.00 min in CHO and PLA, respectively (p = .57). In accordance, average power output (265 ± 5 vs. 266 ± 5 W, p = .58), heart rate (169 ± 2 vs. 168 ± 2 beats/min, p = .43), and RPE (16.4 ± 0.3 vs. 16.7 ± 0.3 W, p = .26) did not differ between treatments. Furthermore, after dividing the trial into 8s, no differences in power output, heart rate, or perceived exertion were observed over time between treatments. Carbohydrate mouth rinsing does not improve time-trial performance when exercise is performed in a practical, postprandial setting.


2020 ◽  
Vol 127 (5) ◽  
pp. 912-924 ◽  
Author(s):  
Morgan C. Karow ◽  
Rebecca R. Rogers ◽  
Joseph A. Pederson ◽  
Tyler D. Williams ◽  
Mallory R. Marshall ◽  
...  

This study investigated the effects of preferred and non-preferred warm-up music listening conditions on subsequent exercise performance. A total of 12 physically active male and female participants engaged in a crossover, counterbalanced research design in which they completed exercise trials after 3 different warm-up experiences of (a) no music (NM), (b) preferred music (PREF), and (c) nonpreferred music (NON-PREF). Participants began warming up by rowing at 50% of of age-predicted heart rate maximum (HRmax) for 5 minutes while exposed to the three music conditions. Immediately following the warm-up and cessation of any music, participants completed a 2000-m rowing time trial as fast as possible. Relative power output, trial time, heart rate, rating of perceived exertion, and motivation were analyzed. Results indicated that, compared with NM, relative power output was significantly higher ( p  =   .018), trial time was significantly lower ( p  =   .044), and heart rate was significantly higher ( p  =   .032) during the PREF but not the NON-PREF condition. Rating of perceived exertion was not altered, regardless of music condition ( p > .05). Motivation to exercise was higher during the PREF condition versus the NM ( p  =   .001) and NON-PREF ( p <  .001) conditions. Listening to preferred warm-up music improved subsequent exercise performance compared with no music, while nonpreferred music did not impart ergogenic benefit.


2020 ◽  
Vol 15 (7) ◽  
pp. 964-970
Author(s):  
David Barranco-Gil ◽  
Lidia B. Alejo ◽  
Pedro L. Valenzuela ◽  
Jaime Gil-Cabrera ◽  
Almudena Montalvo-Pérez ◽  
...  

Purpose: To analyze the effects of different warm-up protocols on endurance-cycling performance from an integrative perspective (by assessing perceptual, neuromuscular, physiological, and metabolic variables). Methods: Following a randomized crossover design, 15 male cyclists (35 [9] y; peak oxygen uptake [VO2peak] 66.4 [6.8] mL·kg−1·min−1) performed a 20-minute cycling time trial (TT) preceded by no warm-up, a standard warm-up (10 min at 60% of VO2peak), or a warm-up that was intended to induce potentiation postactivation (PAP warm-up; 5 min at 60% of VO2peak followed by three 10-s all-out sprints). Study outcomes were jumping ability and heart-rate variability (both assessed at baseline and before the TT), TT performance (mean power output), and perceptual (rating of perceived exertion) and physiological (oxygen uptake, muscle oxygenation, heart-rate variability, blood lactate, and thigh skin temperature) responses during and after the TT. Results: Both standard and PAP warm-up (9.7% [4.7%] and 12.9% [6.5%], respectively, P < .001), but not no warm-up (−0.9% [4.8%], P = .074), increased jumping ability and decreased heart-rate variability (−7.9% [14.2%], P = .027; −20.3% [24.7%], P = .006; and −1.7% [10.5%], P = .366). Participants started the TT (minutes 0–3) at a higher power output and oxygen uptake after PAP warm-up compared with the other 2 protocols (P < .05), but no between-conditions differences were found overall for the remainder of outcomes (P > .05). Conclusions: Compared with no warm-up, warming up enhanced jumping performance and sympathetic modulation before the TT, and the inclusion of brief sprints resulted in a higher initial power output during the TT. However, no warm-up benefits were found for overall TT performance or for perceptual or physiological responses during the TT.


2013 ◽  
Vol 38 (6) ◽  
pp. 597-604 ◽  
Author(s):  
Andrew H. Hall ◽  
Michael D. Leveritt ◽  
Kiran D.K. Ahuja ◽  
Cecilia M. Shing

Researchers have focused primarily on investigating the effects of coingesting carbohydrate (CHO) and protein (PRO) during recovery and, as such, there is limited research investigating the benefits of CHO+PRO coingestion during exercise for enhancing subsequent exercise performance. The aim of this study was to investigate whether coingestion of CHO+PRO during endurance training would enhance recovery and subsequent exercise performance. Ten well-trained male cyclists (aged 29.7 ± 7.5 years; maximal oxygen uptake, 66.2 ± 6 mL·kg−1·min−1) took part in a randomized, double-blind, cross-over trial. Each trial consisted of a 2.5-h morning training bout during which the cyclists ingested a CHO+PRO or energy-matched CHO beverage followed by a 4-h recovery period and a subsequent performance time trial (total work, 7 kJ·kg−1). Blood was collected before and after exercise. Time-trial performance was 1.8% faster in the CHO+PRO trial compared with the CHO trial (p = 0.149; 95% CI, −13 to 87 s; 75.8% likelihood of benefit). The increase in myoglobin level from before the training bout to after the training bout was lower in the CHO+PRO trial (0.74 nmol·L−1; 95% CI, 0.3–1.17 nmol·L−1) compared with the CHO trial (1.16 nmol·L−1; 95% CI, 0.6–1.71 nmol·L−1) (p = 0.018). Additionally, the decrease in neutrophil count over the recovery period was greater in the CHO+PRO trial (p = 0.034), and heart rate (p < 0.022) and rating of perceived exertion (RPE) (p < 0.01) were lower during training in the CHO+PRO trial compared with the CHO trial. Ingesting PRO, in addition to CHO, during strenuous training lowered exercise stress, as indicated by reduced heart rate, RPE, and muscle damage, when compared with CHO alone. CHO+PRO ingestion during training is also likely to enhance recovery, providing a worthwhile improvement in subsequent cycling time-trial performance.


2016 ◽  
Vol 11 (6) ◽  
pp. 707-714 ◽  
Author(s):  
Benoit Capostagno ◽  
Michael I. Lambert ◽  
Robert P. Lamberts

Finding the optimal balance between high training loads and recovery is a constant challenge for cyclists and their coaches. Monitoring improvements in performance and levels of fatigue is recommended to correctly adjust training to ensure optimal adaptation. However, many performance tests require a maximal or exhaustive effort, which reduces their real-world application. The purpose of this review was to investigate the development and use of submaximal cycling tests that can be used to predict and monitor cycling performance and training status. Twelve studies met the inclusion criteria, and 3 separate submaximal cycling tests were identified from within those 12. Submaximal variables including gross mechanical efficiency, oxygen uptake (VO2), heart rate, lactate, predicted time to exhaustion (pTE), rating of perceived exertion (RPE), power output, and heart-rate recovery (HRR) were the components of the 3 tests. pTE, submaximal power output, RPE, and HRR appear to have the most value for monitoring improvements in performance and indicate a state of fatigue. This literature review shows that several submaximal cycle tests have been developed over the last decade with the aim to predict, monitor, and optimize cycling performance. To be able to conduct a submaximal test on a regular basis, the test needs to be short in duration and as noninvasive as possible. In addition, a test should capture multiple variables and use multivariate analyses to interpret the submaximal outcomes correctly and alter training prescription if needed.


2006 ◽  
Vol 100 (1) ◽  
pp. 194-202 ◽  
Author(s):  
L. Havemann ◽  
S. J. West ◽  
J. H. Goedecke ◽  
I. A. Macdonald ◽  
A. St Clair Gibson ◽  
...  

The aim of this study was to investigate the effect of a high-fat diet (HFD) followed by 1 day of carbohydrate (CHO) loading on substrate utilization, heart rate variability (HRV), effort perception [rating or perceived exertion (RPE)], muscle recruitment [electromyograph (EMG)], and performance during a 100-km cycling time trial. In this randomized single-blind crossover study, eight well-trained cyclists completed two trials, ingesting either a high-CHO diet (HCD) (68% CHO energy) or an isoenergetic HFD (68% fat energy) for 6 days, followed by 1 day of CHO loading (8–10 g CHO/kg). Subjects completed a 100-km time trial on day 1 and a 1-h cycle at 70% of peak oxygen consumption on days 3, 5, and 7, during which resting HRV and resting and exercising respiratory exchange ratio (RER) were measured. On day 8, subjects completed a 100-km performance time trial, during which blood samples were drawn and EMG was recorded. Ingestion of the HFD reduced RER at rest ( P < 0.005) and during exercise ( P < 0.01) and increased plasma free fatty acid levels ( P < 0.01), indicating increased fat utilization. There was a tendency for the low-frequency power component of HRV to be greater for HFD-CHO ( P = 0.056), suggestive of increased sympathetic activation. Overall 100-km time-trial performance was not different between diets; however, 1-km sprint power output after HFD-CHO was lower ( P < 0.05) compared with HCD-CHO. Despite a reduced power output with HFD-CHO, RPE, heart rate, and EMG were not different between trials. In conclusion, the HFD-CHO dietary strategy increased fat oxidation, but compromised high intensity sprint performance, possibly by increased sympathetic activation or altered contractile function.


2007 ◽  
Vol 2 (2) ◽  
pp. 201-211 ◽  
Author(s):  
Thomas Zochowski ◽  
Elizabeth Johnson ◽  
Gordon G. Sleivert

Context:Warm-up before athletic competition might enhance performance by affecting various physiological parameters. There are few quantitative data available on physiological responses to the warm-up, and the data that have been reported are inconclusive. Similarly, it has been suggested that varying the recovery period after a standardized warm-up might affect subsequent performance.Purpose:To determine the effects of varying post-warm-up recovery time on a subsequent 200-m swimming time trial.Methods:Ten national-caliber swimmers (5 male, 5 female) each swam a 1500-m warm-up and performed a 200-m time trial of their specialty stroke after either 10 or 45 min of passive recovery. Subjects completed 1 time trial in each condition separated by 1 wk in a counterbalanced order. Blood lactate and heart rate were measured immediately after warm-up and 3 min before, immediately after, and 3 min after the time trial. Rating of perceived exertion was measured immediately after the warm-up and time trial.Results:Time-trial performance was significantly improved after 10 min as opposed to 45 min recovery (136.80 ± 20.38 s vs 138.69 ± 20.32 s, P < .05). There were no significant differences between conditions for heart rate and blood lactate after the warm-up. Pre-time-trial heart rate, however, was higher in the 10-min than in the 45-min rest condition (109 ± 14 beats/min vs 94 ± 21 beats/min, P < .05).Conclusions:A post-warm-up recovery time of 10 min rather than 45 min is more beneficial to 200-m swimming time-trial performance.


2017 ◽  
Vol 57 (1) ◽  
pp. 139-146 ◽  
Author(s):  
James Fisher ◽  
Thomas Clark ◽  
Katherine Newman-Judd ◽  
Josh Arnold ◽  
James Steele

AbstractTime-trials represent an ecologically valid approach to assessment of endurance performance. Such information is useful in the application of testing protocols and estimation of sample sizes required for research/magnitude based inference methods. The present study aimed to investigate the intra-subject variability of 5 km time-trial running performance in trained runners. Six competitive trained male runners (age = 33.8 ± 10.1 years; stature = 1.78 ± 0.01 m; body mass = 69.0 ± 10.4 kg, $\it V^{.}$ O2max = 62.6 ± 11.0 ml·kg·min-1) completed an incremental exercise test to volitional exhaustion followed by 5 x 5 km time-trials (including a familiarisation trial), individually spaced by 48 hours. The time taken to complete each trial, heart rate, rating of perceived exertion and speed were all assessed. Intra-subject absolute standard error of measurement and the coefficient of variance were calculated for time-trial variables in addition to the intra-class correlation coefficient for time taken to complete the time-trial. For the primary measure time, results showed a coefficient of variation score across all participants of 1.5 ± 0.59% with an intra-class correlation coefficient score of 0.990. Heart rate, rating of perceived exertion and speed data showed a variance range between 0.8 and 3.05%. It was concluded that when compared with related research, there was observed low intra-subject variability in trained runners over a 5 km distance. This supports the use of this protocol for 5 km time-trial performance for assessment of nutritional strategies, ergogenic aids or training interventions on endurance running performance.


2002 ◽  
Vol 95 (3_suppl) ◽  
pp. 1047-1062 ◽  
Author(s):  
Mee-Lee Leung ◽  
Pak-Kwong Chung ◽  
Raymond W. Leung

This study evaluated the validity and reliability of the Chinese-translated (Cantonese) versions of the Borg 6–20 Rating of Perceived Exertion (RPE) scale and the Children's Effort Rating Table (CERT) during continuous incremental cycle ergometry with 10- to 11-yr.-old Hong Kong school children. A total of 69 children were randomly assigned, with the restriction of groups being approximately equal, to two groups using the two scales, CERT ( n = 35) and RPE ( n = 34). Both groups performed two trials of identical incremental continuous cycling exercise (Trials 1 and 2) 1 wk. apart for the reliability test. Objective measures of exercise intensity (heart rate, absolute power output, and relative oxygen consumption) and the two subjective measures of effort were obtained during the exercise. For both groups, significant Pearson correlations were found for perceived effort ratings correlated with heart rate ( rs ≥ .69), power output ( rs ≥ .75), and oxygen consumption ( rs ≥ .69). In addition, correlations for CERT were consistently higher than those for RPE. High test-retest intraclass correlations were found for both the effort ( R = .96) and perceived exertion ( R = 89) groups, indicating that the scales were reliable. In conclusion, the CERT and RPE scales, when translated into Cantonese, are valid and reliable measures of exercise intensity during controlled exercise by children. The Effort rating may be better than the Perceived Exertion scale as a measure of perceived exertion that can be more validly and reliably used with Hong Kong children.


2020 ◽  
Vol 15 (7) ◽  
pp. 958-963
Author(s):  
Paulo H.C. Mesquita ◽  
Emerson Franchini ◽  
Marco A. Romano-Silva ◽  
Guilherme M. Lage ◽  
Maicon R. Albuquerque

Purpose: To investigate the effects of anodal transcranial direct current stimulation (a-tDCS) on the aerobic performance, heart rate (HR), and rating of perceived exertion (RPE) of highly trained taekwondo athletes. Methods: Twelve (8 men and 4 women) international/national-level athletes received a-tDCS or sham treatment over the M1 location in a randomized, single-blind crossover design. The stimulation was delivered at 1.5 mA for 15 min using an extracephalic bihemispheric montage. Athletes performed the progressive-specific taekwondo test 10 min after stimulation. HR was monitored continuously during the test, and RPE was registered at the end of each stage and at test cessation. Results: There were no significant differences between sham and a-tDCS in time to exhaustion (14.6 and 14.9, respectively, P = .53, effect size = 0.15) and peak kicking frequency (52 and 53.6, respectively, P = .53, effect size = 0.15) or in HR (P > .05) and RPE responses (P > .05). Conclusions: Extracephalic bihemispheric a-tDCS over M1 did not influence the aerobic performance of taekwondo athletes or their psychophysiological responses, so athletes and staff should be cautious when using it in a direct-to-consumer manner.


Sign in / Sign up

Export Citation Format

Share Document