scholarly journals Relationships Between Internal and External Training Load in Team-Sport Athletes: Evidence for an Individualized Approach

2017 ◽  
Vol 12 (2) ◽  
pp. 230-234 ◽  
Author(s):  
Jonathan D. Bartlett ◽  
Fergus O’Connor ◽  
Nathan Pitchford ◽  
Lorena Torres-Ronda ◽  
Samuel J. Robertson

Purpose:The aim of this study was to quantify and predict relationships between rating of perceived exertion (RPE) and GPS training-load (TL) variables in professional Australian football (AF) players using group and individualized modeling approaches.Methods:TL data (GPS and RPE) for 41 professional AF players were obtained over a period of 27 wk. A total of 2711 training observations were analyzed with a total of 66 ± 13 sessions/player (range 39–89). Separate generalized estimating equations (GEEs) and artificial-neural-network analyses (ANNs) were conducted to determine the ability to predict RPE from TL variables (ie, session distance, high-speed running [HSR], HSR %, m/min) on a group and individual basis.Results:Prediction error for the individualized ANN (root-mean-square error [RMSE] 1.24 ± 0.41) was lower than the group ANN (RMSE 1.42 ± 0.44), individualized GEE (RMSE 1.58 ± 0.41), and group GEE (RMSE 1.85 ± 0.49). Both the GEE and ANN models determined session distance as the most important predictor of RPE. Furthermore, importance plots generated from the ANN revealed session distance as most predictive of RPE in 36 of the 41 players, whereas HSR was predictive of RPE in just 3 players and m/min was predictive of RPE in just 2 players.Conclusions:This study demonstrates that machine learning approaches may outperform more traditional methodologies with respect to predicting athlete responses to TL. These approaches enable further individualization of load monitoring, leading to more accurate training prescription and evaluation.

2019 ◽  
Vol 14 (6) ◽  
pp. 847-849 ◽  
Author(s):  
Pedro Figueiredo ◽  
George P. Nassis ◽  
João Brito

Purpose: To quantify the association between salivary secretory immunoglobulin A (sIgA) and training load in elite football players. Methods: Data were obtained on 4 consecutive days during the preparation camp for the Rio 2016 Olympic Games. Saliva samples of 18 elite male football players were collected prior to breakfast. The session rating of perceived exertion (s-RPE) and external training-load metrics from global positioning systems (GPS) were recorded. Within-subject correlation coefficients between training load and sIgA concentration, and magnitude of relationships, were calculated. Results: sIgA presented moderate to large negative correlations with s-RPE (r = −.39), total distance covered (r = −.55), accelerations (r = −.52), and decelerations (r = −.48). Trivial to small associations were detected between sIgA and distance covered per minute (r = .01), high-speed distance (r = −.23), and number of sprints (r = −.18). sIgA displayed a likely moderate decrease from day 1 to day 2 (d = −0.7) but increased on day 3 (d = 0.6). The training-load variables had moderate to very large rises from day 1 to day 2 (d = 0.7 to 3.2) but lowered from day 2 to day 3 (d = −5.0 to −0.4), except for distance per minute (d = 0.8) and sprints (unclear). On day 3, all training-load variables had small to large increments compared with day 1 (d = 0.4 to 1.5), except for accelerations (d = −0.8) and decelerations (unclear). Conclusions: In elite football, sIgA might be more responsive to training volume than to intensity. External load such as GPS-derived variables presented stronger association with sIgA than with s-RPE. sIgA can be used as an additional objective tool in monitoring football players.


2018 ◽  
Vol 13 (7) ◽  
pp. 947-952 ◽  
Author(s):  
Luka Svilar ◽  
Julen Castellano ◽  
Igor Jukic ◽  
David Casamichana

Purpose: To study the structure of interrelationships among external-training-load measures and how these vary among different positions in elite basketball. Methods: Eight external variables of jumping (JUMP), acceleration (ACC), deceleration (DEC), and change of direction (COD) and 2 internal-load variables (rating of perceived exertion [RPE] and session RPE) were collected from 13 professional players with 300 session records. Three playing positions were considered: guards (n = 4), forwards (n = 4), and centers (n = 5). High and total external variables (hJUMP and tJUMP, hACC and tACC, hDEC and tDEC, and hCOD and tCOD) were used for the principal-component analysis. Extraction criteria were set at an eigenvalue of greater than 1. Varimax rotation mode was used to extract multiple principal components. Results: The analysis showed that all positions had 2 or 3 principal components (explaining almost all of the variance), but the configuration of each factor was different: tACC, tDEC, tCOD, and hJUMP for centers; hACC, tACC, tCOD, and hJUMP for guards; and tACC, hDEC, tDEC, hCOD, and tCOD for forwards are specifically demanded in training sessions, and therefore these variables must be prioritized in load monitoring. Furthermore, for all playing positions, RPE and session RPE have high correlation with the total amount of ACC, DEC, and COD. This would suggest that although players perform the same training tasks, the demands of each position can vary. Conclusion: A particular combination of external-load measures is required to describe the training load of each playing position, especially to better understand internal responses among players.


2017 ◽  
Vol 38 (10) ◽  
pp. 735-740 ◽  
Author(s):  
Daniel Weaving ◽  
Ben Jones ◽  
Phil Marshall ◽  
Kevin Till ◽  
Grant Abt

AbstractThis study aims to investigate the effect of training mode (conditioning and skills) on multivariate training load relationships in professional rugby league via principal component analysis. Four measures of training load (internal: heart rate exertion index, session rating of perceived exertion; external: PlayerLoad™, individualised high-speed distance) were collected from 23 professional male rugby league players over the course of one 12 wk preseason period. Training was categorised by mode (skills or conditioning) and then subjected to a principal component analysis. Extraction criteria were set at an eigenvalue of greater than 1. Modes that extracted more than 1 principal component were subject to a varimax rotation. Skills extracted 1 principal component, explaining 57% of the variance. Conditioning extracted 2 principal components (1st: internal; 2nd: external), explaining 85% of the variance. The presence of multiple training load dimensions (principal components) during conditioning training provides further evidence of the influence of training mode on the ability of individual measures of external or internal training load to capture training variance. Consequently, a combination of internal and external training-load measures is required during certain training modes.


2018 ◽  
Author(s):  
Rafael Soares Oliveira ◽  
João Paulo Brito ◽  
Alexandre Martins ◽  
Bruno Mendes ◽  
Francisco Calvete ◽  
...  

Elite soccer teams that participate in European competitions often have a difficult schedule, involving weeks in which they play up to three matches, which leads to acute and transient subjective, biochemical, metabolic and physical disturbances in players over the subsequent hours and days. Inadequate time recovery between matches can expose players to the risk of training and competing whilst not fully recovered. Controlling the level of effort and fatigue of players to reach higher performances during the matches is therefore critical. Therefore, the aim of the current study was to provide the first report of seasonal internal and external training load (TL) that included Hooper Index (HI) scores in elite soccer players during an in-season period. Sixteen elite soccer players were sampled, using global position system, session rating of perceived exertion (s-RPE) and HI scores during the daily training sessions throughout the 2015-2016 in-season period. Data were analysed across ten mesocycles (M: 1 to 10) and collected according to the number of days prior to a match. Total daily distance covered was higher at the start (M1 and M3) compared to the final mesocycle (M10) of the season. M1 (5589m) reached a greater distance than M5 (4473m) (ES = 9.33 [12.70, 5.95]) and M10 (4545m) (ES = 9.84 [13.39, 6.29]). M3 (5691m) reached a greater distance than M5 (ES = 9.07 [12.36, 5.78]), M7 (ES = 6.13 [8.48, 3.79]) and M10 (ES = 9.37 [12.76, 5.98]). High-speed running distance was greater in M1 (227m), than M5 (92m) (ES = 27.95 [37.68, 18.22]) and M10 (138m) (ES = 8.46 [11.55, 5.37]). Interestingly, the s-RPE response was higher in M1 (331au) in comparison to the last mesocycle (M10, 239au). HI showed minor variations across mesocycles and in days prior to the match. Every day prior to a match, all internal and external TL variables expressed significant lower values to other days prior to a match (p<0.01). In general, there were no differences between player positions. Conclusions: Our results reveal that despite the existence of some significant differences between mesocycles, there were minor changes across the in-season period for the internal and external TL variables used. Furthermore, it was observed that MD-1 presented a reduction of external TL (regardless of mesocycle) while internal TL variables did not have the same record during in-season match-day-minus.


2014 ◽  
Vol 9 (6) ◽  
pp. 905-912 ◽  
Author(s):  
Dan Weaving ◽  
Phil Marshall ◽  
Keith Earle ◽  
Alan Nevill ◽  
Grant Abt

Purpose:This study investigated the effect of training mode on the relationships between measures of training load in professional rugby league players.Methods:Five measures of training load (internal: individualized training impulse, session rating of perceived exertion; external—body load, high-speed distance, total impacts) were collected from 17 professional male rugby league players over the course of two 12-wk preseason periods. Training was categorized by mode (small-sided games, conditioning, skills, speed, strongman, and wrestle) and subsequently subjected to a principal-component analysis. Extraction criteria were set at an eigenvalue of greater than 1. Modes that extracted more than 1 principal component were subjected to a varimax rotation.Results:Small-sided games and conditioning extracted 1 principal component, explaining 68% and 52% of the variance, respectively. Skills, wrestle, strongman, and speed extracted 2 principal components each explaining 68%, 71%, 72%, and 67% of the variance, respectively.Conclusions:In certain training modes the inclusion of both internal and external training-load measures explained a greater proportion of the variance than any 1 individual measure. This would suggest that in training modes where 2 principal components were identified, the use of only a single internal or external training-load measure could potentially lead to an underestimation of the training dose. Consequently, a combination of internal- and external-load measures is required during certain training modes.


2015 ◽  
Vol 10 (5) ◽  
pp. 566-571 ◽  
Author(s):  
Alexandre Moreira ◽  
Johann C. Bilsborough ◽  
Courtney J. Sullivan ◽  
Michael Cianciosi ◽  
Marcelo Saldanha Aoki ◽  
...  

Purpose:To examine the training periodization of an elite Australian Football team during different phases of the season.Methods:Training-load data were collected during 22 wk of preseason and 23 wk of in-season training. Training load was measured using the session rating of perceived exertion (session-RPE) for all training sessions and matches from 44 professional Australian Football players from the same team. Training intensity was divided into 3 zones based on session-RPE (low, <4; moderate, >4 AU and <7 AU; and high, >7 AU). Training load and intensity were analyzed according to the type of training session completed.Results:Higher training load and session duration were undertaken for all types of training sessions during the preseason than in-season (P < .05), with the exception of “other” training (ie, re/prehabilitation training, cross-training, and recovery activities). Training load and intensity were higher during the preseason, with the exception of games, where greater load and intensity were observed during the in-season. The overall distribution of training intensity was similar between phases with the majority of training performed at moderate or high intensity.Conclusions:The current findings may allow coaches and scientists to better understand the characteristics of Australian Football periodization, which in turn may aid in developing optimal training programs. The results also indicate that a polarized training-intensity distribution that has been reported in elite endurance athletes does not occur in professional Australian Football.


2017 ◽  
Vol 12 (6) ◽  
pp. 819-824 ◽  
Author(s):  
Heidi R. Thornton ◽  
Jace A. Delaney ◽  
Grant M. Duthie ◽  
Ben J. Dascombe

Purpose:To investigate the ability of various internal and external training-load (TL) monitoring measures to predict injury incidence among positional groups in professional rugby league athletes.Methods:TL and injury data were collected across 3 seasons (2013–2015) from 25 players competing in National Rugby League competition. Daily TL data were included in the analysis, including session rating of perceived exertion (sRPE-TL), total distance (TD), high-speed-running distance (>5 m/s), and high-metabolic-power distance (HPD; >20 W/kg). Rolling sums were calculated, nontraining days were removed, and athletes’ corresponding injury status was marked as “available” or “unavailable.” Linear (generalized estimating equations) and nonlinear (random forest; RF) statistical methods were adopted.Results:Injury risk factors varied according to positional group. For adjustables, the TL variables associated most highly with injury were 7-d TD and 7-d HPD, whereas for hit-up forwards they were sRPE-TL ratio and 14-d TD. For outside backs, 21- and 28-d sRPE-TL were identified, and for wide-running forwards, sRPE-TL ratio. The individual RF models showed that the importance of the TL variables in injury incidence varied between athletes.Conclusions:Differences in risk factors were recognized between positional groups and individual athletes, likely due to varied physiological capacities and physical demands. Furthermore, these results suggest that robust machine-learning techniques can appropriately monitor injury risk in professional team-sport athletes.


Sports ◽  
2019 ◽  
Vol 7 (3) ◽  
pp. 68 ◽  
Author(s):  
Vincenzo Rago ◽  
João Brito ◽  
Pedro Figueiredo ◽  
Peter Krustrup ◽  
António Rebelo

We examined the within-player correlation between external training load (ETL) and perceptual responses to training in a professional male football team (n = 13 outfield players) over an eight-week competitive period. ETL was collected using 10-Hz GPS, whereas perceptual responses were accessed through rating of perceived exertion (RPE) questionnaires. Moderate-speed running (MSR), high-speed running (HSR) and sprinting were defined using arbitrary (fixed) and individualised speed zones (based on maximal aerobic speed and maximal sprinting speed). When ETL was expressed as actual distance covered within the training session, perceptual responses were moderately correlated to MSR and HSR quantified using the arbitrary method (p < 0.05; r = 0.53 to 0.59). However, the magnitude of correlations tended to increase when the individualised method was used (p < 0.05; r = 0.58 to 0.67). Distance covered by sprinting was moderately correlated to perceptual responses only when the individualised method was used (p < 0.05; 0.55 [0.05; 0.83] and 0.53 [0.02; 0.82]). Perceptual responses were largely correlated to the sum of distance covered within all three speed running zones, irrespective of the quantification method (p < 0.05; r = 0.58 to 0.68). When ETL was expressed as percentage of total distance covered within the training session, no significant correlations were observed (p > 0.05). Perceptual responses to training load seem to be better associated with ETL, when the latter is adjusted to individual fitness capacities. Moreover, reporting ETL as actual values of distance covered within the training session instead of percentual values inform better about players’ perceptual responses to training load.


2013 ◽  
Vol 8 (2) ◽  
pp. 195-202 ◽  
Author(s):  
Brendan R. Scott ◽  
Robert G. Lockie ◽  
Timothy J. Knight ◽  
Andrew C. Clark ◽  
Xanne A.K. Janse de Jonge

Purpose:To compare various measures of training load (TL) derived from physiological (heart rate [HR]), perceptual (rating of perceived exertion [RPE]), and physical (global positioning system [GPS] and accelerometer) data during in-season field-based training for professional soccer.Methods:Fifteen professional male soccer players (age 24.9 ± 5.4 y, body mass 77.6 ± 7.5 kg, height 181.1 ± 6.9 cm) were assessed in-season across 97 individual training sessions. Measures of external TL (total distance [TD], the volume of low-speed activity [LSA; <14.4 km/h], high-speed running [HSR; >14.4 km/h], very high-speed running [VHSR; >19.8 km/h], and player load), HR and session-RPE (sRPE) scores were recorded. Internal TL scores (HR-based and sRPE-based) were calculated, and their relationships with measures of external TL were quantified using Pearson product–moment correlations.Results:Physical measures of TD, LSA volume, and player load provided large, significant (r = .71−.84; P < .01) correlations with the HR-based and sRPE-based methods. Volume of HSR and VHSR provided moderate to large, significant (r = .40−.67; P < .01) correlations with measures of internal TL.Conclusions:While the volume of HSR and VHSR provided significant relationships with internal TL, physical-performance measures of TD, LSA volume, and player load appear to be more acceptable indicators of external TL, due to the greater magnitude of their correlations with measures of internal TL.


Author(s):  
Rafael Oliveira ◽  
João Paulo Brito ◽  
Nuno Loureiro ◽  
Vítor Padinha ◽  
Hadi Nobari ◽  
...  

Background: The purpose of this study is to compare training load (TL) preceding a home versus away match in a top-class elite European team during the 2015–2016 season. Methods: Twenty elite outfield soccer players with a mean ± SD age, height and body mass of 25.9 ± 4.6 years, 183.1 ± 6.6 cm and 78.6 ± 6.6 kg, respectively, participated in this study. Total distance covered, high-speed running distance (HSRD), average speed (AvS), rating of perceived exertion (RPE) multiplied by training duration (s-RPE) and Hooper index (HI) were collected. Data from 24 weeks were analyzed through match-day minus/plus approach (MD-5, -4, -3, -2, -1, MD + 1). Results: All external TL variables indicated a decrease from MD-5 until MD-1 and then an increase to MD + 1 (p < 0.01). HI decreased from MD-5 to MD-1, but s-RPE increased until MD-3 and then decreased until MD + 1. When comparing TL data that preceded home matches versus away matches, for MD-5, HSRD and muscle soreness exhibited higher values when away match neared (p < 0.05). For MD-4 and MD-3, total distance, HSRD and AvS exhibited higher values closer to an away match than a home match (p < 0.05). For MD-1, total distances covered were higher closer to a home match than an away match (p < 0.01). For MD + 1, all HI items and AvS were higher when an away match was played (p < 0.05). Conclusions: This study confirms and provides evidence regarding the influence on internal and external TL data preceding home and away matches from a team that played in European competitions.


Sign in / Sign up

Export Citation Format

Share Document