Effects of Bout Duration on Players’ Internal and External Loads During Small-Sided Games in Young Soccer Players

2017 ◽  
Vol 12 (10) ◽  
pp. 1370-1377 ◽  
Author(s):  
Yusuf Köklü ◽  
Utku Alemdaroğlu ◽  
Hamit Cihan ◽  
Del P. Wong

Purpose: To investigate the effects of different bout durations on internal and external loads of young soccer players during different small-sided games (SSGs). Methods: Fifteen young male soccer players (average age 17 ± 1 y) participated in 2 vs 2, 3 vs 3, and 4 vs 4 SSGs. All games lasted 12 min playing time in total, but each SSG format further consisted of 4 bout durations: continuous (CON: 1 bout × 12 min) or interval with short (SBD: 6 bouts  × 2 min), medium (MBD: 3 bouts × 4 min), or long (LBD: 2 bouts × 6 min) bout durations. During the SSGs, heart-rate (HR) responses and distance covered in different speed zones (walking and low-intensity, moderate-intensity, and high-intensity running) were measured. Rating of perceived exertion (RPE) and blood lactate (La−) were determined at the end of each SSG. Results: The SBD format elicited significantly lower %HRmax responses compared to LBD and CON in all formats (P < .05). The SBD format also showed significantly shorter distances covered in walking and greater distances covered in moderate-intensity running, as well as significantly greater total distance covered compared to LBD and CON in all formats (P < .05). In addition, LBD produced significantly lower La− and RPE responses than SBD and CON in all formats (P < .05). Conclusions: These results suggest that coaches and sport scientists who want to achieve higher internal loads could use SBD and CON timing protocols, while those who want to achieve higher external loads might prefer to use SBD and MBD when planning all SSG formats.

2018 ◽  
Vol 13 (7) ◽  
pp. 940-946 ◽  
Author(s):  
Farhan Juhari ◽  
Dean Ritchie ◽  
Fergus O’Connor ◽  
Nathan Pitchford ◽  
Matthew Weston ◽  
...  

Context: Team-sport training requires the daily manipulation of intensity, duration, and frequency, with preseason training focusing on meeting the demands of in-season competition and training on maintaining fitness. Purpose: To provide information about daily training in Australian football (AF), this study aimed to quantify session intensity, duration, and intensity distribution across different stages of an entire season. Methods: Intensity (session ratings of perceived exertion; CR-10 scale) and duration were collected from 45 professional male AF players for every training session and game. Each session’s rating of perceived exertion was categorized into a corresponding intensity zone, low (<4.0 arbitrary units), moderate (≥4.0 and <7.0), and high (≥7.0), to categorize session intensity. Linear mixed models were constructed to estimate session duration, intensity, and distribution between the 3 preseason and 4 in-season periods. Effects were assessed using linear mixed models and magnitude-based inferences. Results: The distribution of the mean session intensity across the season was 29% low intensity, 57% moderate intensity, and 14% high intensity. While 96% of games were high intensity, 44% and 49% of skills training sessions were low intensity and moderate intensity, respectively. Running had the highest proportion of high-intensity training sessions (27%). Preseason displayed higher training-session intensity (effect size [ES] = 0.29–0.91) and duration (ES = 0.33–1.44), while in-season game intensity (ES = 0.31–0.51) and duration (ES = 0.51–0.82) were higher. Conclusions: By using a cost-effective monitoring tool, this study provides information about the intensity, duration, and intensity distribution of all training types across different phases of a season, thus allowing a greater understanding of the training and competition demands of Australian footballers.


2020 ◽  
Vol 15 (8) ◽  
pp. 1081-1086
Author(s):  
Jordan L. Fox ◽  
Cody J. O’Grady ◽  
Aaron T. Scanlan

Purpose: To investigate the relationships between external and internal workloads using a comprehensive selection of variables during basketball training and games. Methods: Eight semiprofessional, male basketball players were monitored during training and games for an entire season. External workload was determined as PlayerLoad™: total and high-intensity accelerations, decelerations, changes of direction, and jumps and total low-intensity, medium-intensity, high-intensity, and overall inertial movement analysis events. Internal workload was determined using the summated-heart-rate zones and session rating of perceived exertion models. The relationships between external and internal workload variables were separately calculated for training and games using repeated-measures correlations with 95% confidence intervals. Results: PlayerLoad was more strongly related to summated-heart-rate zones (r = .88 ± .03, very large [training]; r = .69 ± .09, large [games]) and session rating of perceived exertion (r = .74 ± .06, very large [training]; r = .53 ± .12, large [games]) than other external workload variables (P < .05). Correlations between total and high-intensity accelerations, decelerations, changes of direction, and jumps and total low-intensity, medium-intensity, high-intensity, and overall inertial movement analysis events and internal workloads were stronger during training (r = .44–.88) than during games (r = .15–.69). Conclusions: PlayerLoad and summated-heart-rate zones possess the strongest dose–response relationship among a comprehensive selection of external and internal workload variables in basketball, particularly during training sessions compared with games. Basketball practitioners may therefore be able to best anticipate player responses when prescribing training drills using these variables for optimal workload management across the season.


2017 ◽  
Vol 56 (1) ◽  
pp. 127-137 ◽  
Author(s):  
Carolina Cabral-Santos ◽  
José Gerosa-Neto ◽  
Daniela S. Inoue ◽  
Fabrício E. Rossi ◽  
Jason M. Cholewa ◽  
...  

AbstractThe aim of this study was to investigate the physiological responses to moderate-intensity continuous and high-intensity intermittent exercise. Twelve physically active male subjects were recruited and completed a 5-km run on a treadmill in two experimental sessions in randomized order: continuously (70% sVO2max) and intermittently (1:1 min at sVO2max). Oxygen uptake, excess post-exercise oxygen consumption, lactate concentration, heart rate and rating of perceived exertion data were recorded during and after each session. The lactate levels exhibited higher values immediately post-exercise than at rest (High-Intensity: 1.43 ± 0.25 to 7.36 ± 2.78; Moderate-Intensity: 1.64 ± 1.01 to 4.05 ± 1.52 mmol⋅L−1, p = 0.0004), but High-Intensity promoted higher values (p = 0.001) than Moderate-Intensity. There was a difference across time on oxygen uptake at all moments tested in both groups (High-Intensity: 100.19 ± 8.15L; Moderate-Intensity: 88.35 ± 11.46, p < 0.001). Both exercise conditions promoted increases in excess postexercise oxygen consumption (High-Intensity: 6.61 ± 1.85 L; Moderate-Intensity: 5.32 ± 2.39 L, p < 0.005), but higher values were observed in the High-Intensity exercise protocol. High-Intensity was more effective at modifying the heart rate and rating of perceived exertion (High-Intensity: 183 ± 12.54 and 19; Moderate-Intensity: 172 ± 8.5 and 16, respectively, p < 0.05). In conclusion, over the same distance, Moderate-Intensity and High-Intensity exercise exhibited different lactate concentrations, heart rate and rating of perceived exertion. As expected, the metabolic contribution also differed, and High-Intensity induced higher energy expenditure, however, the total duration of the session may have to be taken into account. Moreover, when following moderate-intensity training, the percentage of sVO2max and the anaerobic threshold might influence exercise and training responses.


2020 ◽  
Vol 15 (6) ◽  
pp. 825-832 ◽  
Author(s):  
Davide Ferioli ◽  
Diego Rucco ◽  
Ermanno Rampinini ◽  
Antonio La Torre ◽  
Marco M. Manfredi ◽  
...  

Purpose: To examine the physiological, physical, and technical demands of game-based drills (GBDs) with regular dribble (RD) or no dribble (ND) involving a different number of players (3 vs 3, 4 vs 4, and 5 vs 5). Methods: Ten regional-level male basketball players performed 6 full-court GBD formats (each consisting of 3 bouts of 4 min and 2 min rest) on multiple occasions. The physiological and perceptual responses were measured through heart rate and rating of perceived exertion. Video-based time–motion analysis was performed to assess the GBD physical demands. The frequencies of occurrence and the duration were calculated for high-intensity, moderate-intensity, low-intensity, and recovery activities. Technical demands were assessed with a notional-analysis technique. A 2-way repeated-measures analysis of variance was used to assess statistical differences between GBD formats. Results: A greater perceptual response (rating of perceived exertion) was recorded during 3 versus 3 than 5 versus 5 formats (P = .005). Significant interactions were observed for the number of recovery (P = .021), low-intensity activity (P = .007), and all movements (P = .001) completed. Greater time was spent performing low-intensity and high-intensity activities during RD than ND format. Greater technical demands were observed for several variables during 3 versus 3 than 4 versus 4 or 5 versus 5. A greater number of turnovers (P = .027), total (P ≤ .001), and correct passes (P ≤ .001) were recorded during ND than RD format. Conclusions: The number of players predominantly affected the perceptual response to GBD, while both the number of players and rule modification (RD vs ND) affected activities performed during GBD. Reducing the number of players increases the GBD technical elements, while ND format promotes a greater number of turnovers and passes.


Author(s):  
Hidehiro Nakahara ◽  
Shin-ya Ueda ◽  
Eriko Kawai ◽  
Rui Higashiura ◽  
Tadayoshi Miyamoto

Abstract Background The purpose of the present study was to investigate the effects of bradycardia induced by pre-exercise acupuncture on heart rate responses during short-duration exercise. Methods A total of 29 healthy subjects underwent two protocols: protocol 1 assessed the effects of manual acupuncture on heart rate response during rest, and protocol 2 tested the hypothesis that the bradycardic effects induced by pre-exercise acupuncture continue during low- and high-intensity exercise. Their average age, height, weight, and body mass index were 21.2 ± 2.0 years, 167.2 ± 8.8 cm, 63.8 ± 12.8 kg, and 22.7 ± 3.5 kg/m2, respectively. In acupuncture stimulations for protocols 1 and 2, an acupuncture needle was inserted into the lower leg and manual acupuncture stimulation was performed at 1 Hz. Results In protocol 1 (resting condition), acupuncture stimulation induced a bradycardic response, which continued for 4 min after the cessation of acupuncture stimulation (p < 0.05). In protocol 2, the bradycardic response induced by pre-exercise acupuncture stimulation remained during low-intensity exercise and in the beginning of high-intensity exercise performed immediately after the cessation of acupuncture stimulation (p < 0.05). However, the effects disappeared when post-acupuncture exercise was performed when the heart rate was approximately 140 beats/min during high-intensity exercise. The rating of perceived exertion after exercise differed significantly between the acupuncture stimulation task (7.9 ± 1.6) and no-stimulation task (8.5 ± 2.0) (p = 0.03) only in the low intensity group. Conclusion This study may provide new insights into the effect of acupuncture stimulation on psycho-physiological conditions during exercise.


2019 ◽  
Vol 14 (9) ◽  
pp. 1265-1272 ◽  
Author(s):  
Carlo Castagna ◽  
Stefano D’Ottavio ◽  
Stefano Cappelli ◽  
Susana Cristina Araújo Póvoas

Purpose: To examine the internal and external load imposed by long sprint ability–oriented small-sided games (SSG) using different ratios of players to pitch area (densities) in soccer players. Methods: A total of 19 professional soccer players from the same soccer club (age = 17.1 [0.3] y, height = 1.76 [0.69] m, and body mass = 69.7 [9.4] kg) participated in this study. Players performed 4 × 30-s (150 s recovery) all-out 1-vs-1 SSG considering 300, 200, and 100 m2 per player (48 h apart). Players’ external loads were tracked with global positioning technology (20 Hz). Heart rate, blood lactate concentration (BLc), and rating of perceived exertion characterized players’ internal load. Peak BLc was assessed with a 30-s all-out test on a nonmotorized treadmill (NMT). Results: SSG300 produced higher BLc than SSG200 (moderate) and SSG100 (large). The SSG300, SSG200, and SSG100 BLc were 97.8% (34.8%), trivial; 74.7% (24.9%), moderate; and 43.4% (15.7%), large, of the NMT30s peak BLc, respectively. Players covered more distance at high intensity during the SSG300 than in other SSG conditions (huge to very large differences). High-intensity deceleration distance was largely lower in SSG200 than in SSG300. SSG100 elicited very large to huge and large to very large lower external load values than SSG300 and SSG200, respectively. Conclusions: The main finding of this study showed an inverse association between ball-drill density and internal/external loads in long sprint ability–oriented SSG. The SSG300 provided BLc closer to individual maximal, thus satisfying the all-out construct assumed for the development of long sprint ability. Further studies using the SSG300 as a training intervention and/or investigating other different SSG formats using the same density are warranted.


2020 ◽  
pp. 030573562090477
Author(s):  
Jorge A Aburto-Corona ◽  
J A de Paz ◽  
José Moncada-Jiménez ◽  
Bryan Montero-Herrera ◽  
Luis M Gómez-Miranda

The purpose of this study was to determine the effect of the musical tempo on heart rate (HR), rating of perceived exertion (RPE), and distance run (DR) during a treadmill aerobic test in young male and female adults. Participants ran on the treadmill listening to music at 140 beats per minute (bpm; M140), 120 bpm (M120), or without music (NM). No significant sex differences were found on HR (M140 = 172.6 ± 12.7, M120 = 171.9 ± 11.1, NM = 170.1 ± 12.2 bpm, p = .312), RPE (M140 = 7.5 ± 1.4, M120 = 7.6 ± 1.3, NM = 7.6 ± 1.2, p = .931), or DR (M140 = 4,791.4 ± 2,681.1, M120 = 4,900.0 ± 2,916.9, NM = 4,356.1 ± 2,571.2 m, p = .715). Differences were found in the effect of tempo on HR between condition M140 and NM (172.6 ± 12.7 vs. 170.1 ± 12.2 bpm, p = .044, η2 = 0.32). In conclusion, musical tempo does not affect performance, physiological, or perceptual variables in young adults exercising on a treadmill at a constant speed.


2015 ◽  
Vol 40 (9) ◽  
pp. 907-917 ◽  
Author(s):  
Adam J. Wells ◽  
Jay R. Hoffman ◽  
Kyle S. Beyer ◽  
Mattan W. Hoffman ◽  
Adam R. Jajtner ◽  
...  

The management of playing time in National Collegiate Athletic Association (NCAA) soccer athletes may be a key factor affecting running performance during competition. This study compared playing time and running performance between regular-season and postseason competitions during a competitive women’s soccer season. Nine NCAA Division I women soccer players (age, 21.3 ± 0.9 years; height, 170.3 ± 5.7 cm; body mass, 64.0 ± 5.8 kg) were tracked using portable GPS devices across 21 games during a competitive season (regular season (n = 17); postseason (n = 4)). Movements on the field were divided into operationally distinct thresholds defined as standing/transient motion, walking, jogging, low-speed running, moderate-speed running, high-speed running, sprinting, low-intensity running, and high-intensity running. A significant increase in minutes played (+17%, p = 0.010) was observed at postseason compared with the regular season. Concomitant increases in time spent engaged in low-intensity running (LIR: +18%, p = 0.011), standing/transient motion (+35%, p = 0.004), walking (+17%, p = 0.022), distance covered while walking (+14%, p = 0.036), and at low intensity (+11%, p = 0.048) were observed. Performance comparisons between the first and second half within games revealed a significant decrease (p ≤ 0.05) in high-speed and high-intensity runs during the second half of the postseason compared with the regular season. Changes in minutes played correlated significantly with changes in absolute time spent engaged in LIR (r = 0.999, p < 0.001), standing/transient motion (r = 0.791, p = 0.011), walking (r = 0.975, p = 0.001), jogging (r = 0.733, p = 0.025), distance covered while walking (r = 0.898, p < 0.001) and low-intensity activity (r = 0.945, p < 0.001). Negative correlations were observed between minutes played and absolute time sprinting (r = −0.698, p = 0.037) and distance covered sprinting (r = −0.689, p = 0.040). Results indicate that additional minutes played during the postseason were primarily performed at lower intensity thresholds, suggesting running performance during postseason competitions may be compromised with greater playing time in intercollegiate women’s soccer.


2016 ◽  
Vol 11 (6) ◽  
pp. 880-886 ◽  
Author(s):  
Alexandre Moreira ◽  
Rodrigo V Gomes ◽  
Caroline D Capitani ◽  
Charles R Lopes ◽  
Audrei R Santos ◽  
...  

The aim of this study was to describe the training intensity distribution of elite young tennis players, based on the session rating of perceived exertion and heart rate methods. Twelve professional tennis players participated in this study. Heart rate and session rating of perceived exertion were collected in 384 tennis training sessions, 23 simulated matches, and 17 official matches. The total training time spent in the heart rate zone-1 (52.00%) and zone-2 (37.10%) was greater than the time spent in zone-3 (10.90%) during the 5-week training period ( p < 0.05). Similarly, the total training time spent in the session rating of perceived exertion zone-1 (42.00%) and zone-2 (47.50%) was also greater than the time in zone-3 (10.50%) ( p < 0.05). The data of the present study suggest that the majority of the training sessions of these young tennis players were performed at low-to-moderate intensity zone and, therefore, under the intensity performed during actual tennis match play.


2017 ◽  
Vol 12 (2) ◽  
pp. 247-253 ◽  
Author(s):  
Will Vickery ◽  
Ben Dascombe ◽  
Rob Duffield

Purpose:To examine the relationship between session rating of perceived exertion (sRPE) and measures of internal and external training load (TL) in cricket batsmen and medium-fast bowlers during net-based training sessions.Methods:The internal (heart rate), external (movement demands, PlayerLoad), and technical (cricket-specific skills) loads of 30 male cricket players (age 21.2 ± 3.8 y, height 1.82 ± 0.07 m, body mass 79.0 ± 8.7 kg) were determined from net-based cricket-training sessions (n = 118). The relationships between sRPE and measures of TL were quantified using Pearson product–moment correlations respective to playing position. Stepwise multiple-regression techniques provided key internal- and external-load determinants of sRPE in cricket players.Results:Significant correlations were evident (r = -.34 to .87, P < .05) between internal and external measures of TL and sRPE, with the strongest correlations (r ≥ .62) for GPS-derived measures for both playing positions. In batsmen, stepwise multiple-regression analysis revealed that 67.8% of the adjusted variance in sRPE could be explained by PlayerLoad and high-intensity distance (y = 27.43 + 0.81 PlayerLoad + 0.29 high-intensity distance). For medium-fast bowlers, 76.3% of the adjusted variance could be explained by total distance and mean heart rate (y = 101.82 + total distance 0.05 + HRmean – 0.48).Conclusion:These results suggest that sRPE is a valid method of reporting TL among cricket batsmen and medium-fast bowlers. Position-specific responses are evident and should be considered when monitoring the TL of cricket players.


Sign in / Sign up

Export Citation Format

Share Document