Effect of Body Composition on Physiological Responses to Cold-Water Immersion and the Recovery of Exercise Performance

2018 ◽  
Vol 13 (3) ◽  
pp. 382-389 ◽  
Author(s):  
Jessica M. Stephens ◽  
Shona L. Halson ◽  
Joanna Miller ◽  
Gary J. Slater ◽  
Dale W. Chapman ◽  
...  

Purpose: To explore the influence of body composition on thermal responses to cold-water immersion (CWI) and the recovery of exercise performance. Methods: Male subjects were stratified into 2 groups: low fat (LF; n = 10) or high fat (HF; n = 10). Subjects completed a high-intensity interval test (HIIT) on a cycle ergometer followed by a 15-min recovery intervention (control [CON] or CWI). Core temperature (Tc), skin temperature, and heart rate were recorded continuously. Performance was assessed at baseline, immediately post-HIIT, and 40 min postrecovery using a 4-min cycling time trial (TT), countermovement jump (CMJ), and isometric midthigh pull (IMTP). Perceptual measures (thermal sensation [TS], total quality of recovery [TQR], soreness, and fatigue) were also assessed. Results: Tc and TS were significantly lower in LF than in HF from 10 min (Tc, LF 36.5°C ± 0.5°C, HF 37.2°C ± 0.6°C; TS, LF 2.3 ± 0.5 arbitrary units [a.u.], HF 3.0 ± 0.7 a.u.) to 40 min (Tc, LF 36.1°C ± 0.6°C, HF 36.8°C ±0.7°C; TS, LF 2.3 ± 0.6 a.u., HF 3.2 ± 0.7 a.u.) after CWI (P < .05). Recovery of TT performance was significantly enhanced after CWI in HF (10.3 ± 6.1%) compared with LF (3.1 ± 5.6%, P = .01); however, no differences were observed between HF (6.9% ±5.7%) and LF (5.4% ± 5.2%) with CON. No significant differences were observed between groups for CMJ, IMTP, TQR, soreness, or fatigue in either condition. Conclusion: Body composition influences the magnitude of Tc change during and after CWI. In addition, CWI enhanced performance recovery in the HF group only. Therefore, body composition should be considered when planning CWI protocols to avoid overcooling and maximize performance recovery.

2016 ◽  
Vol 51 (3) ◽  
pp. 252-257 ◽  
Author(s):  
Cory L. Butts ◽  
Brendon P. McDermott ◽  
Brian J. Buening ◽  
Jeffrey A. Bonacci ◽  
Matthew S. Ganio ◽  
...  

Exercise conducted in hot, humid environments increases the risk for exertional heat stroke (EHS). The current recommended treatment of EHS is cold-water immersion; however, limitations may require the use of alternative resources such as a cold shower (CS) or dousing with a hose to cool EHS patients.Context: To investigate the cooling effectiveness of a CS after exercise-induced hyperthermia.Objective: Randomized, crossover controlled study.Design: Environmental chamber (temperature = 33.4°C ± 2.1°C; relative humidity = 27.1% ± 1.4%).Setting: Seventeen participants (10 male, 7 female; height = 1.75 ± 0.07 m, body mass = 70.4 ± 8.7 kg, body surface area = 1.85 ± 0.13 m2, age range = 19–35 years) volunteered.Patients or Other Participants: On 2 occasions, participants completed matched-intensity volitional exercise on an ergometer or treadmill to elevate rectal temperature to ≥39°C or until participant fatigue prevented continuation (reaching at least 38.5°C). They were then either treated with a CS (20.8°C ± 0.80°C) or seated in the chamber (control [CON] condition) for 15 minutes.Intervention(s): Rectal temperature, calculated cooling rate, heart rate, and perceptual measures (thermal sensation and perceived muscle pain).Main Outcome Measure(s): The rectal temperature (P = .98), heart rate (P = .85), thermal sensation (P = .69), and muscle pain (P = .31) were not different during exercise for the CS and CON trials (P &gt; .05). Overall, the cooling rate was faster during CS (0.07°C/min ± 0.03°C/min) than during CON (0.04°C/min ± 0.03°C/min; t16 = 2.77, P = .01). Heart-rate changes were greater during CS (45 ± 20 beats per minute) compared with CON (27 ± 10 beats per minute; t16 = 3.32, P = .004). Thermal sensation was reduced to a greater extent with CS than with CON (F3,45 = 41.12, P &lt; .001).Results: Although the CS facilitated cooling rates faster than no treatment, clinicians should continue to advocate for accepted cooling modalities and use CS only if no other validated means of cooling are available.Conclusions:


2008 ◽  
Vol 44 (6) ◽  
pp. 461-465 ◽  
Author(s):  
J. J. Peiffer ◽  
C. R. Abbiss ◽  
G. Watson ◽  
K. Nosaka ◽  
P. B. Laursen

2013 ◽  
Vol 115 (9) ◽  
pp. 1324-1331 ◽  
Author(s):  
Kevin De Pauw ◽  
Bart Roelands ◽  
Uroš Marušič ◽  
Helio Fernandez Tellez ◽  
Kristel Knaepen ◽  
...  

The aim of this study was to determine the effect of prolonged intensive cycling and postexercise recovery in the heat on brain sources of altered brain oscillations. After a max test and familiarization trial, nine trained male subjects (23 ± 3 yr; maximal oxygen uptake = 62.1 ± 5.3 ml·min−1·kg−1) performed three experimental trials in the heat (30°C; relative humidity 43.7 ± 5.6%). Each trial consisted of two exercise tasks separated by 1 h. The first was a 60-min constant-load trial, followed by a 30-min simulated time trial (TT1). The second comprised a 12-min simulated time trial (TT2). After TT1, active recovery (AR), passive rest (PR), or cold water immersion (CWI) was applied for 15 min. Electroencephalography was measured at baseline and during postexercise recovery. Standardized low-resolution brain electromagnetic tomography was applied to accurately pinpoint and localize altered electrical neuronal activity. After CWI, PR and AR subjects completed TT2 in 761 ± 42, 791 ± 76, and 794 ± 62 s, respectively. A prolonged intensive cycling performance in the heat decreased β activity across the whole brain. Postexercise AR and PR elicited no significant electrocortical differences, whereas CWI induced significantly increased β3 activity in Brodmann areas (BA) 13 (posterior margin of insular cortex) and BA 40 (supramarginal gyrus). Self-paced prolonged exercise in the heat seems to decrease β activity, hence representing decreased arousal. Postexercise CWI increased β3 activity at BA 13 and 40, brain areas involved in somatosensory information processing.


2021 ◽  
Vol 3 ◽  
Author(s):  
Mohammed Ihsan ◽  
Chris R. Abbiss ◽  
Robert Allan

In the last decade, cold water immersion (CWI) has emerged as one of the most popular post-exercise recovery strategies utilized amongst athletes during training and competition. Following earlier research on the effects of CWI on the recovery of exercise performance and associated mechanisms, the recent focus has been on how CWI might influence adaptations to exercise. This line of enquiry stems from classical work demonstrating improved endurance and mitochondrial development in rodents exposed to repeated cold exposures. Moreover, there was strong rationale that CWI might enhance adaptations to exercise, given the discovery, and central role of peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α) in both cold- and exercise-induced oxidative adaptations. Research on adaptations to post-exercise CWI have generally indicated a mode-dependant effect, where resistance training adaptations were diminished, whilst aerobic exercise performance seems unaffected but demonstrates premise for enhancement. However, the general suitability of CWI as a recovery modality has been the focus of considerable debate, primarily given the dampening effect on hypertrophy gains. In this mini-review, we highlight the key mechanisms surrounding CWI and endurance exercise adaptations, reiterating the potential for CWI to enhance endurance performance, with support from classical and contemporary works. This review also discusses the implications and insights (with regards to endurance and strength adaptations) gathered from recent studies examining the longer-term effects of CWI on training performance and recovery. Lastly, a periodized approach to recovery is proposed, where the use of CWI may be incorporated during competition or intensified training, whilst strategically avoiding periods following training focused on improving muscle strength or hypertrophy.


2008 ◽  
Vol 40 (Supplement) ◽  
pp. S228
Author(s):  
Greg Farnell ◽  
Katherine Pierce ◽  
Rob Demes ◽  
Tiffany Collinsworth ◽  
Edward J. Ryan ◽  
...  

2013 ◽  
Vol 8 (3) ◽  
pp. 227-242 ◽  
Author(s):  
Wigand Poppendieck ◽  
Oliver Faude ◽  
Melissa Wegmann ◽  
Tim Meyer

Purpose:Cooling after exercise has been investigated as a method to improve recovery during intensive training or competition periods. As many studies have included untrained subjects, the transfer of those results to trained athletes is questionable.Methods:Therefore, the authors conducted a literature search and located 21 peer-reviewed randomized controlled trials addressing the effects of cooling on performance recovery in trained athletes.Results:For all studies, the effect of cooling on performance was determined and effect sizes (Hedges’ g) were calculated. Regarding performance measurement, the largest average effect size was found for sprint performance (2.6%, g = 0.69), while for endurance parameters (2.6%, g = 0.19), jump (3.0%, g = 0.15), and strength (1.8%, g = 0.10), effect sizes were smaller. The effects were most pronounced when performance was evaluated 96 h after exercise (4.3%, g = 1.03). Regarding the exercise used to induce fatigue, effects after endurance training (2.4%, g = 0.35) were larger than after strength-based exercise (2.4%, g = 0.11). Cold-water immersion (2.9%, g = 0.34) and cryogenic chambers (3.8%, g = 0.25) seem to be more beneficial with respect to performance than cooling packs (−1.4%, g= −0.07). For cold-water application, whole-body immersion (5.1%, g = 0.62) was significantly more effective than immersing only the legs or arms (1.1%, g = 0.10).Conclusions:In summary, the average effects of cooling on recovery of trained athletes were rather small (2.4%, g = 0.28). However, under appropriate conditions (whole-body cooling, recovery from sprint exercise), postexercise cooling seems to have positive effects that are large enough to be relevant for competitive athletes.


2016 ◽  
Vol 21 (5) ◽  
pp. 793-804 ◽  
Author(s):  
Paula Fernandes Aguiar ◽  
Sílvia Mourão Magalhães ◽  
Ivana Alice Teixeira Fonseca ◽  
Vanessa Batista da Costa Santos ◽  
Mariana Aguiar de Matos ◽  
...  

2017 ◽  
Vol 18 (1) ◽  
pp. 54-61 ◽  
Author(s):  
Coen S. Zandvoort ◽  
Jelmer R. de Zwart ◽  
Brenda L. van Keeken ◽  
Patrick J. F. Viroux ◽  
Ivo J. H. Tiemessen

Sign in / Sign up

Export Citation Format

Share Document