Is the Functional Threshold Power a Valid Surrogate of the Lactate Threshold?

2018 ◽  
Vol 13 (10) ◽  
pp. 1293-1298 ◽  
Author(s):  
Pedro L. Valenzuela ◽  
Javier S. Morales ◽  
Carl Foster ◽  
Alejandro Lucia ◽  
Pedro de la Villa

Purpose: To analyze the relationship between functional threshold power (FTP) and the lactate threshold (LT). Methods: A total of 20 male cyclists performed an incremental test in which LT was determined. At least 48 h later, they performed a 20-min time trial, and 95% of the mean power output was defined as FTP. Participants were divided into recreational (peak power output < 4.5 W·kg−1; n = 11) or trained cyclists (peak power output > 4.5 W·kg−1; n = 9) according to their fitness status. Results: The FTP (240 [35] W) was overall not significantly different (effect size = 0.20; limits of agreement = −2.4% [11.5%]) from the LT (246 [24] W), and both markers were strongly correlated (r = .95; P < .0001). Accounting for the participants’ fitness status, no significant differences were found between FTP and LT (effect size = 0.22; limits of agreement =2.1% [7.8%]) in trained cyclists, but FTP was significantly lower than the LT (P = .0004, effect size = 0.81; limits of agreement =−6.5% [8.3%]) in recreational cyclists. A significant relationship was found between relative peak power output and the bias between FTP and the LT markers (r = .77; P < .0001). Conclusions: FTP is a valid field test-based marker for the assessment of endurance fitness. However, caution should be taken when using FTP interchangeably with LT, as the bias between markers seems to depend on the athlete’s fitness status. Whereas FTP provides a good estimate of LT in trained cyclists, in recreational cyclists, it may underestimate LT.

2001 ◽  
Vol 33 (12) ◽  
pp. 2077-2081 ◽  
Author(s):  
DAVID J. BENTLEY ◽  
LARS R. MCNAUGHTON ◽  
DYLAN THOMPSON ◽  
VERONICA E. VLECK ◽  
ALAN M. BATTERHAM

2021 ◽  
Vol 12 ◽  
Author(s):  
Pedro L. Valenzuela ◽  
Lidia B. Alejo ◽  
Almudena Montalvo-Pérez ◽  
Jaime Gil-Cabrera ◽  
Eduardo Talavera ◽  
...  

Purpose: To analyze the relationship between critical power (CP) and different lactate threshold (LT2) markers in cyclists.Methods: Seventeen male recreational cyclists [33 ± 5 years, peak power output (PO) = 4.5 ± 0.7 W/kg] were included in the study. The PO associated with four different fixed (onset of blood lactate accumulation) and individualized (Dmaxexp, Dmaxpol, and LTΔ1) LT2 markers was determined during a maximal incremental cycling test, and CP was calculated from three trials of 1-, 5-, and 20-min duration. The relationship and agreement between each LT2 marker and CP were then analyzed.Results: Strong correlations (r = 0.81–0.98 for all markers) and trivial-to-small non-significant differences (Hedges’ g = 0.01–0.17, bias = 1–9 W, and p &gt; 0.05) were found between all LT2 markers and CP with the exception of Dmaxexp, which showed the strongest correlation but was slightly higher than the CP (Hedges’ g = 0.43, bias = 20 W, and p &lt; 0.001). Wide limits of agreement (LoA) were, however, found for all LT2 markers compared with CP (from ±22 W for Dmaxexp to ±52 W for Dmaxpol), and unclear to most likely practically meaningful differences (PO differences between markers &gt;1%, albeit &lt;5%) were found between markers attending to magnitude-based inferences.Conclusion: LT2 markers show a strong association and overall trivial-to-small differences with CP. Nevertheless, given the wide LoA and the likelihood of potentially meaningful differences between these endurance-related markers, caution should be employed when using them interchangeably.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Marie Clare Grant ◽  
Robert Robergs ◽  
Marianne Findlay Baird ◽  
Julien S. Baker

It has been reported previously that the upper body musculature is continually active during high intensity cycle ergometry. The aim of this study was to examine the effects of prior upper body exercise on subsequent Wingate (WAnT) performance. Eleven recreationally active males (20.8 ± 2.2 yrs; 77.7 ± 12.0 kg; 1.79 ± 0.04 m) completed two trials in a randomised order. In one trial participants completed2×30 s WAnT tests (WAnT1 and WAnT2) with a 6 min recovery period; in the other trial, this protocol was preceded with 4 sets of biceps curls to induce localised arm fatigue. Prior upper body exercise was found to have a statistically significant detrimental effect on peak power output (PPO) during WAnT1(P<0.05)but no effect was observed for mean power output (MPO)(P>0.05). Handgrip (HG) strength was also found to be significantly lower following the upper body exercise. These results demonstrate that the upper body is meaningfully involved in the generation of leg power during intense cycling.


Author(s):  
Søren Jessen ◽  
Søren Reitelseder ◽  
Anders Kalsen ◽  
Michael Kreiberg ◽  
Johan Onslev ◽  
...  

In this study, we examined the effect of beta2-agonist salbutamol at oral doses during a period of resistance training on sprint performance, quadriceps contractile function, skeletal muscle hypertrophy, fiber-type composition, maximal activity of enzymes of importance for anaerobic energy turnover, and sarcoplasmic reticulum Ca2+-handling in young men. Twenty-six men (23±2 years;mean±SD) were randomized to daily intake of oral salbutamol (16 mg/d;RES+SAL) or placebo (RES) during 11 weeks full-body resistance training 3 times/week. Mean power output during 10s maximal cycling increased more (P=0.027) in RES+SAL (+12%) than in RES (+7%), whereas peak power output increased similarly (RES+SAL:+8%;RES:+7%;P=0.400). Quadriceps dynamic peak torque and maximal voluntary isometric torque increased by 13 and 14% (P≤0.001) in RES+SAL and 13 and 13% (P≤0.001) in RES, respectively. Myosin heavy chain (MHC) isoform distribution transitioned from MHCI and MHCIIx towards MHCIIa in RES+SAL (P=0.002), but not in RES (P=0.323). MHCIIa cross-sectional-area increased more (P=0.040) in RES+SAL (+35%) than RES (+21%). Sarcoplasmic reticulum Ca2+-release rate increased in both groups (RES+SAL:+9%,P=0.048;RES:+13%,P=0.008), whereas Ca2+-uptake rate increased only in RES (+12%,P=0.022) but not different from the non-significant change in RES+SAL (+2%,P=0.484). Maximal activity of lactate dehydrogenase increased only in RES+SAL (+13%,P=0.008). Muscle content of the dihydropyridine receptor, ryanodine receptor 1, and sarcoplasmic reticulum Ca2+-ATPase isoform 1 and 2 did not change with the intervention in either group (P≥0.100). These observations suggest that salbutamol is a muscle anabolic drug, which induces greater sprint mean power output, without affecting peak power output and muscle strength when ingested during a period of resistance training.


2018 ◽  
Vol 64 (1) ◽  
pp. 137-146
Author(s):  
Jean-François Dionne ◽  
Claude Lajoie ◽  
Philippe Gendron ◽  
Eduardo Freiberger ◽  
François Trudeau

Abstract The purpose of our study was to assess physiological adaptations and measure mood outcomes following a cycling training camp in competitive athletes. Fourteen competitive athletes (8 males, 6 females) performed 2 incremental tests to exhaustion before and after a training camp. Volume and intensity (load) of the training regimen were recorded. Submaximal and maximal metabolic data were analysed, as well as economy variables (gross mechanical efficiency and cycling economy). Skeletal muscle adaptations were assessed using near infrared spectroscopy (NIRS). For both genders (n = 14), peak power output, peak power output-W/kg ratio and peak power output-B[La] were significantly increased (p < 0.05) after the cycling training camp (p < 0.05). Significant increases occurred for gross mechanical efficiency measured at the lactate threshold (+4.9%) and at the same precamp lactate threshold power output (+2.9%). At the lactate threshold and Post Camp Lactate Threshold Power, cycling economy increased by 5.2 and 2.9%, respectively (p < 0.05). These power measurements were significantly correlated with individual fluctuations in deoxyhaemoglobin in the vastus lateralis for male cyclists only. Profile of Mood State questionnaire results showed that subcategories “Tension-Anxiety”, “Confusion”, “Fatigue” and “Total Global Score” significantly decreased after the training camp. Cycling training camps were associated with positive adaptations (increased cycling economy, gross mechanical efficiency and power output) as well as some mental benefits. This indicates that despite some significant physiological adaptations participants probably did not overreach during their CTC.


2018 ◽  
Vol 39 (10) ◽  
pp. 737-742 ◽  
Author(s):  
Fernando Borszcz ◽  
Artur Tramontin ◽  
Arthur Bossi ◽  
Lorival Carminatti ◽  
Vitor Costa

AbstractFunctional threshold power is defined as the highest power output a cyclist can maintain in a quasi-steady state for approximately 60 min (FTP60). In order to improve practicality for regular evaluations, FTP60 could theoretically be determined as 95% of the mean power output in a 20-min time trial (FTP20). This study tested this assumption and the validity of FTP20 and FTP60 against the individual anaerobic threshold (IAT). Twenty-three trained male cyclists performed an incremental test to exhaustion, 20- and 60-min time trials, and a time to exhaustion at FTP20. Power output, heart rate and oxygen uptake representing FTP20, FTP60 and IAT were not different (p>0.05), and large to very large correlations were found (r=0.61 to 0.88). Bland-Altman plots between FTP20, FTP60 and IAT showed small bias (–1 to –5 W), but large limits of agreement ([–40 to 32 W] to [–62 to 60 W]). Time to exhaustion at FTP20 was 50.9±15.7 min. In conclusion, FTP20 and FTP60 should not be used interchangeably on an individual basis and their validity against IAT should be interpreted with caution.


2017 ◽  
Vol 12 (5) ◽  
pp. 655-661 ◽  
Author(s):  
Andrea Nicolò ◽  
Ilenia Bazzucchi ◽  
Massimo Sacchetti

Purpose:To verify the accuracy of predicting performance in the severe-intensity domain by means of end-test power output (EP) and the work performed above EP (WEP) obtained from a 3-min all-out test in competitive cyclists.Methods:Ten welltrained cyclists performed a ramp incremental test and a 3-min all-out familiarization test. Subsequently, they performed a 3-min all-out experimental test to obtain EP and WEP and a 10-min time trial (TT). The actual 10-min-TT mean power output was then compared with the power output predicted as P = WEP/Tlim + EP, where Tlim corresponds to 600 s. The ramp-test peak power output (PPO) was compared with PPO predicted as , where S represents the ramp slope (0.5 W/s).Results:The actual (347 ± 30 W) and predicted (376 ± 48 W) 10-min TT mean power output were correlated (r = .87, P = .001) but significantly different (P < .01). The coefficient of variation (CV) between the predicted and actual performance was 5.6% ± 4.4%. The error of prediction was positively correlated to EP (r = .80, P = .005) and negatively correlated to WEP (r = –.71, P = .021). No significant difference was found between the 10-min-TT mean power output and EP (351 ± 53 W). The actual (438 ± 30 W) and predicted (472 ± 41 W) ramp PPO were correlated (r = .88, P < .001) but significantly different (P < .001). The CV between the predicted and actual PPO was 5.2% ± 3%. The error of prediction was positively correlated to EP (r = .63, P = .051).Conclusions:EP and WEP obtained from a 3-min all-out test overestimate severe-intensity performance in competitive cyclists.


2015 ◽  
Vol 25 (3) ◽  
pp. 285-292 ◽  
Author(s):  
Michael L. Newell ◽  
Angus M. Hunter ◽  
Claire Lawrence ◽  
Kevin D. Tipton ◽  
Stuart D. R. Galloway

In an investigator-blind, randomized cross-over design, male cyclists (mean± SD) age 34.0 (± 10.2) years, body mass 74.6 (±7.9) kg, stature 178.3 (±8.0) cm, peak power output (PPO) 393 (±36) W, and VO2max 62 (±9) ml·kg−1min−1 training for more than 6 hr/wk for more than 3y (n = 20) completed four experimental trials. Each trial consisted of a 2-hr constant load ride at 95% of lactate threshold (185 ± 25W) then a work-matched time trial task (~30min at 70% of PPO). Three commercially available carbohydrate (CHO) beverages, plus a control (water), were administered during the 2-hr ride providing 0, 20, 39, or 64g·hr−1 of CHO at a fluid intake rate of 1L·hr−1. Performance was assessed by time to complete the time trial task, mean power output sustained, and pacing strategy used. Mean task completion time (min:sec ± SD) for 39g·hr−1 (34:19.5 ± 03:07.1, p = .006) and 64g·hr−1 (34:11.3 ± 03:08.5 p = .004) of CHO were significantly faster than control (37:01.9 ± 05:35.0). The mean percentage improvement from control was −6.1% (95% CI: −11.3 to −1.0) and −6.5% (95% CI: −11.7 to −1.4) in the 39 and 64g·hr−1 trials respectively. The 20g·hr−1 (35:17.6 ± 04:16.3) treatment did not reach statistical significance compared with control (p = .126) despite a mean improvement of −3.7% (95% CI −8.8−1.5%). No further differences between CHO trials were reported. No interaction between CHO dose and pacing strategy occurred. 39 and 64g·hr−1 of CHO were similarly effective at improving endurance cycling performance compared with a 0g·hr−1 control in our trained cyclists.


2019 ◽  
Vol 14 (9) ◽  
pp. 1273-1279 ◽  
Author(s):  
Owen Jeffries ◽  
Mark Waldron ◽  
Stephen D. Patterson ◽  
Brook Galna

Purpose: Regulation of power output during cycling encompasses the integration of internal and external demands to maximize performance. However, relatively little is known about variation in power output in response to the external demands of outdoor cycling. The authors compared the mean power output and the magnitude of power-output variability and structure during a 20-min time trial performed indoors and outdoors. Methods: Twenty male competitive cyclists ( 60.4 [7.1] mL·kg−1·min−1) performed 2 randomized maximal 20-min time-trial tests: outdoors at a cycle-specific racing circuit and indoors on a laboratory-based electromagnetically braked training ergometer, 7 d apart. Power output was sampled at 1 Hz and collected on the same bike equipped with a portable power meter in both tests. Results: Twenty-minute time-trial performance indoor (280 [44] W) was not different from outdoor (284 [41] W) (P = .256), showing a strong correlation (r = .94; P < .001). Within-persons SD was greater outdoors (69 [21] W) than indoors (33 [10] W) (P < .001). Increased variability was observed across all frequencies in data from outdoor cycling compared with indoors (P < .001) except for the very slowest frequency bin (<0.0033 Hz, P = .930). Conclusions: The findings indicate a greater magnitude of variability in power output during cycling outdoors. This suggests that constraints imposed by the external environment lead to moderate- and high-frequency fluctuations in power output. Therefore, indoor testing protocols should be designed to reflect the external demands of cycling outdoors.


Sign in / Sign up

Export Citation Format

Share Document