scholarly journals The Reproducibility and External Validity of a Modified Rugby League Movement-Simulation Protocol for Interchange Players

2019 ◽  
Vol 14 (4) ◽  
pp. 445-450 ◽  
Author(s):  
Jonathan P. Norris ◽  
Jamie Highton ◽  
Craig Twist

Purpose: To assess the reliability and external validity of a rugby league movement-simulation protocol for interchange players (RLMSP-i) that was adapted to include physical contact between participants. Methods: A total of 18 rugby players performed 2 trials of a modified RLMSP-i, 7 d apart. The simulation was conducted outdoors on artificial turf with movement speeds controlled using an audio signal. Microtechnology was used to measure locomotive and accelerometer (ie, PlayerLoad™) metrics for both bouts (∼23 min each) alongside heart rate (HR) and rating of perceived exertion (RPE). Results: Reported for each bout, total distance (102 [3] m·min−1 and 101 [3] m·min−1), low-speed distance (77 [3] m·min−1 and 79 [4] m·min−1), high-speed distance (25 [3] m·min−1 and 22 [4] m·min−1), PlayerLoad (10 [1] AU·min−1 and 10 [1] AU·min−1), PlayerLoad slow (3.2 [0.6] AU·min−1 and 3.2 [0.6] AU·min−1), 2-dimensional PlayerLoad (6.0 [0.9] AU·min−1 and 5.7 [0.8] AU·min−1), and HR (86 [5]%HRmax and 84 [6]%HRmax) were similar to match play. The coefficient of variation (CV%) for locomotive metrics ranged from 1.3% to 14.4%, accelerometer CV% 4.4% to 10.0%, and internal load 4.8% to 13.7%. All variables presented a CV% less than the calculated moderate change during 1 or both bouts of the simulation except high-speed distance, percentage of the participant’s peak HR, and RPE. Conclusion: The modified RLMSP-i offers a reliable simulation to investigate influences of training and nutrition interventions on the movement and collision activities of rugby league interchange players.

2015 ◽  
Vol 10 (6) ◽  
pp. 746-753 ◽  
Author(s):  
Thomas Mullen ◽  
Jamie Highton ◽  
Craig Twist

It is important to understand the extent to which physical contact changes the internal and external load during rugby simulations that aim to replicate the demands of match play. Accordingly, this study examined the role of physical contact on the physiological and perceptual demands during and immediately after a simulated rugby league match. Nineteen male rugby players completed a contact (CON) and a noncontact (NCON) version of the rugby league match-simulation protocol in a randomized crossover design with 1 wk between trials. Relative distance covered (ES = 1.27; ±0.29), low-intensity activity (ES = 1.13; ±0.31), high-intensity running (ES = 0.49; ±0.34), heart rate (ES = 0.52; ±0.35), blood lactate concentration (ES = 0.78; ±0.34), rating of perceived exertion (RPE) (ES = 0.72; ±0.38), and session RPE (ES = 1.45; ±0.51) were all higher in the CON than in the NCON trial. However, peak speeds were lower in the CON trial (ES = −0.99; ±0.40) despite unclear reductions in knee-extensor (ES = 0.19; ±0.40) and -flexor (ES = 0.07; ±0.43) torque. Muscle soreness was also greater after CON than in the NCON trial (ES = 0.97; ±0.55). The addition of physical contact to the movement demands of a simulated rugby league match increases many of the external and internal demands but also results in players’ slowing their peak running speed during sprints. These findings highlight the importance of including contacts in simulation protocols and training practices designed to replicate the demands of real match play.


2017 ◽  
Vol 38 (10) ◽  
pp. 735-740 ◽  
Author(s):  
Daniel Weaving ◽  
Ben Jones ◽  
Phil Marshall ◽  
Kevin Till ◽  
Grant Abt

AbstractThis study aims to investigate the effect of training mode (conditioning and skills) on multivariate training load relationships in professional rugby league via principal component analysis. Four measures of training load (internal: heart rate exertion index, session rating of perceived exertion; external: PlayerLoad™, individualised high-speed distance) were collected from 23 professional male rugby league players over the course of one 12 wk preseason period. Training was categorised by mode (skills or conditioning) and then subjected to a principal component analysis. Extraction criteria were set at an eigenvalue of greater than 1. Modes that extracted more than 1 principal component were subject to a varimax rotation. Skills extracted 1 principal component, explaining 57% of the variance. Conditioning extracted 2 principal components (1st: internal; 2nd: external), explaining 85% of the variance. The presence of multiple training load dimensions (principal components) during conditioning training provides further evidence of the influence of training mode on the ability of individual measures of external or internal training load to capture training variance. Consequently, a combination of internal and external training-load measures is required during certain training modes.


2014 ◽  
Vol 9 (6) ◽  
pp. 905-912 ◽  
Author(s):  
Dan Weaving ◽  
Phil Marshall ◽  
Keith Earle ◽  
Alan Nevill ◽  
Grant Abt

Purpose:This study investigated the effect of training mode on the relationships between measures of training load in professional rugby league players.Methods:Five measures of training load (internal: individualized training impulse, session rating of perceived exertion; external—body load, high-speed distance, total impacts) were collected from 17 professional male rugby league players over the course of two 12-wk preseason periods. Training was categorized by mode (small-sided games, conditioning, skills, speed, strongman, and wrestle) and subsequently subjected to a principal-component analysis. Extraction criteria were set at an eigenvalue of greater than 1. Modes that extracted more than 1 principal component were subjected to a varimax rotation.Results:Small-sided games and conditioning extracted 1 principal component, explaining 68% and 52% of the variance, respectively. Skills, wrestle, strongman, and speed extracted 2 principal components each explaining 68%, 71%, 72%, and 67% of the variance, respectively.Conclusions:In certain training modes the inclusion of both internal and external training-load measures explained a greater proportion of the variance than any 1 individual measure. This would suggest that in training modes where 2 principal components were identified, the use of only a single internal or external training-load measure could potentially lead to an underestimation of the training dose. Consequently, a combination of internal- and external-load measures is required during certain training modes.


2017 ◽  
Vol 12 (6) ◽  
pp. 819-824 ◽  
Author(s):  
Heidi R. Thornton ◽  
Jace A. Delaney ◽  
Grant M. Duthie ◽  
Ben J. Dascombe

Purpose:To investigate the ability of various internal and external training-load (TL) monitoring measures to predict injury incidence among positional groups in professional rugby league athletes.Methods:TL and injury data were collected across 3 seasons (2013–2015) from 25 players competing in National Rugby League competition. Daily TL data were included in the analysis, including session rating of perceived exertion (sRPE-TL), total distance (TD), high-speed-running distance (>5 m/s), and high-metabolic-power distance (HPD; >20 W/kg). Rolling sums were calculated, nontraining days were removed, and athletes’ corresponding injury status was marked as “available” or “unavailable.” Linear (generalized estimating equations) and nonlinear (random forest; RF) statistical methods were adopted.Results:Injury risk factors varied according to positional group. For adjustables, the TL variables associated most highly with injury were 7-d TD and 7-d HPD, whereas for hit-up forwards they were sRPE-TL ratio and 14-d TD. For outside backs, 21- and 28-d sRPE-TL were identified, and for wide-running forwards, sRPE-TL ratio. The individual RF models showed that the importance of the TL variables in injury incidence varied between athletes.Conclusions:Differences in risk factors were recognized between positional groups and individual athletes, likely due to varied physiological capacities and physical demands. Furthermore, these results suggest that robust machine-learning techniques can appropriately monitor injury risk in professional team-sport athletes.


2016 ◽  
Vol 11 (6) ◽  
pp. 749-755 ◽  
Author(s):  
Nicola Furlan ◽  
Mark Waldron ◽  
Mark Osborne ◽  
Adrian J. Gray

Purpose:To assess the ecological validity of the Rugby Sevens Simulation Protocol (R7SP) and to evaluate its interday reliability.Methods:Ten male participants (20 ± 2 y, 74 ± 11 kg) completed 2 trials of the R7SP, separated by 7 d. The R7SP comprised typical running and collision activities, based on data recorded during international rugby sevens match play. Heart rate (HR) was monitored continuously during the R7SP, and the participants’ movements were recorded through a 20-Hz global positioning system unit. Blood lactate and rating of perceived exertion were collected before and immediately after the 1st and 2nd halves of the R7SP.Results:The average activity profile was 117 ± 5 m/min, of which 27 ± 2 m/min was covered at high speed, with a calculated energetic demand of 1037 ± 581 J/kg, of which ~40% was expended at a rate above 19 W/kg. Mean HR was 88% ± 4% of maximal HR. Participants spent ~45% ± 27% of time above 90% of maximal HR (t >90%HRmax). There were no significant differences between trials, except for lactate between the halves of the R7SP. The majority of the measured variables demonstrated a between-trials coefficient of variation (CV%) lower than 5%. Blood lactate measurements (14–20% CV) and t >90%HRmax (26% CV) were less reliable variables. In most cases, the calculated moderate worthwhile change was higher than the CV%.Conclusions:The R7SP replicates the activity profile and HR responses of rugby sevens match play. It is a reliable simulation protocol that can be used in a research environment to detect systematic worthwhile changes in selected performance variables.


2013 ◽  
Vol 8 (5) ◽  
pp. 483-489 ◽  
Author(s):  
Mark Waldron ◽  
Jamie Highton ◽  
Craig Twist

Purpose:This study assessed the reliability of a rugby league movement-simulation protocol, relative to interchanged players (RLMSP-i).Methods:Fifteen male participants completed 2 trials of the RLMSP-i, separated by 1 wk. The RLMSP-i comprised low- to moderate-intensity running, interspersed by high-intensity sprinting and tackling activity, based on global positioning system (GPS) data recorded during Super League performances.Results:The lowest coefficient of variation (CV ± 95% CI) was observed for total m/min during both interchange bout 1 (1.1% ± 0.2%) and bout 2 (1.0% ± 0.2%). The percentage of heart rate peak and ratings of perceived exertion demonstrated CVs of 1.2–2.0% and 2.9–3.5%, respectively. The poorest agreement between trials was found for blood lactate concentration (16.2% ± 2.8%). In no case was the CV smaller than the smallest worthwhile change, yet in every case the moderate changes were larger than the CV.Conclusions:The RLMSP-i’s reliability is sufficient to enable the detection of moderate changes in various performance and physiological measurements that accurately simulate some, but not all, aspects of rugby league matches.


2019 ◽  
Vol 14 (6) ◽  
pp. 847-849 ◽  
Author(s):  
Pedro Figueiredo ◽  
George P. Nassis ◽  
João Brito

Purpose: To quantify the association between salivary secretory immunoglobulin A (sIgA) and training load in elite football players. Methods: Data were obtained on 4 consecutive days during the preparation camp for the Rio 2016 Olympic Games. Saliva samples of 18 elite male football players were collected prior to breakfast. The session rating of perceived exertion (s-RPE) and external training-load metrics from global positioning systems (GPS) were recorded. Within-subject correlation coefficients between training load and sIgA concentration, and magnitude of relationships, were calculated. Results: sIgA presented moderate to large negative correlations with s-RPE (r = −.39), total distance covered (r = −.55), accelerations (r = −.52), and decelerations (r = −.48). Trivial to small associations were detected between sIgA and distance covered per minute (r = .01), high-speed distance (r = −.23), and number of sprints (r = −.18). sIgA displayed a likely moderate decrease from day 1 to day 2 (d = −0.7) but increased on day 3 (d = 0.6). The training-load variables had moderate to very large rises from day 1 to day 2 (d = 0.7 to 3.2) but lowered from day 2 to day 3 (d = −5.0 to −0.4), except for distance per minute (d = 0.8) and sprints (unclear). On day 3, all training-load variables had small to large increments compared with day 1 (d = 0.4 to 1.5), except for accelerations (d = −0.8) and decelerations (unclear). Conclusions: In elite football, sIgA might be more responsive to training volume than to intensity. External load such as GPS-derived variables presented stronger association with sIgA than with s-RPE. sIgA can be used as an additional objective tool in monitoring football players.


2013 ◽  
Vol 31 (1) ◽  
pp. 48-57 ◽  
Author(s):  
Dave Sykes ◽  
Ceri Nicholas ◽  
Kevin Lamb ◽  
Craig Twist

2017 ◽  
Vol 12 (2) ◽  
pp. 175-182 ◽  
Author(s):  
Padraic J Phibbs ◽  
Ben Jones ◽  
Gregory AB Roe ◽  
Dale B Read ◽  
Joshua Darrall-Jones ◽  
...  

Limited information is available regarding the training loads of adolescent rugby union players. One-hundred and seventy male players (age 16.1 ± 1.0 years) were recruited from 10 teams representing two age categories (under-16 and under-18) and three playing standards (school, club and academy). Global positioning systems, accelerometers, heart rate and session-rating of perceived exertion (s-RPE) methods were used to quantify mean session training loads. Session demands differed between age categories and playing standards. Under-18 academy players were exposed to the highest session training loads in terms of s-RPE (236 ± 42 AU), total distance (4176 ± 433 m), high speed running (1270 ± 288 m) and PlayerLoad™ (424 ± 56 AU). Schools players had the lowest session training loads in both respective age categories. Training loads and intensities increased with age and playing standard. Individual monitoring of training load is key to enable coaches to maximise player development and minimise injury risk.


2014 ◽  
Vol 9 (5) ◽  
pp. 811-816 ◽  
Author(s):  
Rich D. Johnston ◽  
Tim J. Gabbett ◽  
Anthony J. Seibold ◽  
David G. Jenkins

Purpose:Repeated sprinting incorporating tackles leads to greater reductions in sprint performance than repeated sprinting alone. However, the influence of physical contact on the running demands of game-based activities is unknown. The aim of this study was to determine whether the addition of physical contact altered pacing strategies during game-based activities.Methods:Twenty-three elite youth rugby league players were divided into 2 groups. Group 1 played the contact game on day 1 while group 2 played the noncontact game; 72 h later they played the alternate game. Each game consisted of offside touch on a 30 × 70-m field, played over two 8-min halves. Rules were identical between games except the contact game included a 10-s wrestle bout every 50 s. Microtechnology devices were used to analyze player movements.Results:There were greater average reductions during the contact game for distance (25%, 38 m/min, vs 10%, 20 m/min; effect size [ES] = 1.78 ± 1.02) and low-speed distance (21%, 24 m/min, vs 0%, 2 m/s; ES = 1.38 ± 1.02) compared with the noncontact game. There were similar reductions in high-speed running (41%, 18 m/min, vs 45%, 15 m/min; ES = 0.15 ± 0.95).Conclusions:The addition of contact to game-based activities causes players to reduce low-speed activity in an attempt to maintain high-intensity activities. Despite this, players were unable to maintain high-speed running while performing contact efforts. Improving a player’s ability to perform contact efforts while maintaining running performance should be a focus in rugby league training.


Sign in / Sign up

Export Citation Format

Share Document