scholarly journals The Internal and External Responses to a Forward-Specific Rugby League Simulation Protocol Performed With and Without Physical Contact

2015 ◽  
Vol 10 (6) ◽  
pp. 746-753 ◽  
Author(s):  
Thomas Mullen ◽  
Jamie Highton ◽  
Craig Twist

It is important to understand the extent to which physical contact changes the internal and external load during rugby simulations that aim to replicate the demands of match play. Accordingly, this study examined the role of physical contact on the physiological and perceptual demands during and immediately after a simulated rugby league match. Nineteen male rugby players completed a contact (CON) and a noncontact (NCON) version of the rugby league match-simulation protocol in a randomized crossover design with 1 wk between trials. Relative distance covered (ES = 1.27; ±0.29), low-intensity activity (ES = 1.13; ±0.31), high-intensity running (ES = 0.49; ±0.34), heart rate (ES = 0.52; ±0.35), blood lactate concentration (ES = 0.78; ±0.34), rating of perceived exertion (RPE) (ES = 0.72; ±0.38), and session RPE (ES = 1.45; ±0.51) were all higher in the CON than in the NCON trial. However, peak speeds were lower in the CON trial (ES = −0.99; ±0.40) despite unclear reductions in knee-extensor (ES = 0.19; ±0.40) and -flexor (ES = 0.07; ±0.43) torque. Muscle soreness was also greater after CON than in the NCON trial (ES = 0.97; ±0.55). The addition of physical contact to the movement demands of a simulated rugby league match increases many of the external and internal demands but also results in players’ slowing their peak running speed during sprints. These findings highlight the importance of including contacts in simulation protocols and training practices designed to replicate the demands of real match play.

2013 ◽  
Vol 8 (5) ◽  
pp. 483-489 ◽  
Author(s):  
Mark Waldron ◽  
Jamie Highton ◽  
Craig Twist

Purpose:This study assessed the reliability of a rugby league movement-simulation protocol, relative to interchanged players (RLMSP-i).Methods:Fifteen male participants completed 2 trials of the RLMSP-i, separated by 1 wk. The RLMSP-i comprised low- to moderate-intensity running, interspersed by high-intensity sprinting and tackling activity, based on global positioning system (GPS) data recorded during Super League performances.Results:The lowest coefficient of variation (CV ± 95% CI) was observed for total m/min during both interchange bout 1 (1.1% ± 0.2%) and bout 2 (1.0% ± 0.2%). The percentage of heart rate peak and ratings of perceived exertion demonstrated CVs of 1.2–2.0% and 2.9–3.5%, respectively. The poorest agreement between trials was found for blood lactate concentration (16.2% ± 2.8%). In no case was the CV smaller than the smallest worthwhile change, yet in every case the moderate changes were larger than the CV.Conclusions:The RLMSP-i’s reliability is sufficient to enable the detection of moderate changes in various performance and physiological measurements that accurately simulate some, but not all, aspects of rugby league matches.


2017 ◽  
Vol 12 (9) ◽  
pp. 1192-1198 ◽  
Author(s):  
Jamie Highton ◽  
Thomas Mullen ◽  
Craig Twist

Purpose:To examine the influence of knowledge of exercise duration on pacing and performance during simulated rugby league match play. Methods:Thirteen male university rugby players completed 3 simulated rugby league matches (RLMSP-i) on separate days in a random order. In a control trial, participants were informed that they would be performing 2 × 23-min bouts (separated by 20 min) of the RLMSP-i (CON). In a second trial, participants were informed that they would be performing 1 × 23-min bout of the protocol but were then asked to perform another 23-min bout (DEC). In a third trial, participants were not informed of the exercise duration and performed 2 × 23-min bouts (UN). Results:Distance covered and high-intensity running were higher in CON (4813 ± 167 m, 26 ± 4.1 m/min) than DEC (4764 ± 112 m, 25.2 ± 2.8 m/min) and UN (4744 ± 131 m, 24.4 m/min). Compared with CON, high-intensity running and peak speed were typically higher for DEC in bout 1 and lower in bout 2 of the RLMSP-i, while UN was generally lower throughout. Similarly, DEC resulted in an increased heart rate, blood lactate, and rating of perceived exertion than CON in bout 1, whereas these variables were lower throughout the protocol in UN. Conclusions:Pacing and performance during simulated rugby league match play depend on an accurate understanding of the exercise endpoint. Applied practitioners should consider informing players of their likely exercise duration to maximize running.


2019 ◽  
Vol 14 (4) ◽  
pp. 445-450 ◽  
Author(s):  
Jonathan P. Norris ◽  
Jamie Highton ◽  
Craig Twist

Purpose: To assess the reliability and external validity of a rugby league movement-simulation protocol for interchange players (RLMSP-i) that was adapted to include physical contact between participants. Methods: A total of 18 rugby players performed 2 trials of a modified RLMSP-i, 7 d apart. The simulation was conducted outdoors on artificial turf with movement speeds controlled using an audio signal. Microtechnology was used to measure locomotive and accelerometer (ie, PlayerLoad™) metrics for both bouts (∼23 min each) alongside heart rate (HR) and rating of perceived exertion (RPE). Results: Reported for each bout, total distance (102 [3] m·min−1 and 101 [3] m·min−1), low-speed distance (77 [3] m·min−1 and 79 [4] m·min−1), high-speed distance (25 [3] m·min−1 and 22 [4] m·min−1), PlayerLoad (10 [1] AU·min−1 and 10 [1] AU·min−1), PlayerLoad slow (3.2 [0.6] AU·min−1 and 3.2 [0.6] AU·min−1), 2-dimensional PlayerLoad (6.0 [0.9] AU·min−1 and 5.7 [0.8] AU·min−1), and HR (86 [5]%HRmax and 84 [6]%HRmax) were similar to match play. The coefficient of variation (CV%) for locomotive metrics ranged from 1.3% to 14.4%, accelerometer CV% 4.4% to 10.0%, and internal load 4.8% to 13.7%. All variables presented a CV% less than the calculated moderate change during 1 or both bouts of the simulation except high-speed distance, percentage of the participant’s peak HR, and RPE. Conclusion: The modified RLMSP-i offers a reliable simulation to investigate influences of training and nutrition interventions on the movement and collision activities of rugby league interchange players.


2016 ◽  
Vol 11 (3) ◽  
pp. 344-349 ◽  
Author(s):  
Pietro Luigi Invernizzi ◽  
Eloisa Limonta ◽  
Andrea Riboli ◽  
Andrea Bosio ◽  
Raffaele Scurati ◽  
...  

Purpose:To assess the effects of acute combined L-carnosine and β-alanine (Carn-BA) supplementation on isometric and dynamic tasks.Methods:Twelve healthy participants performed knee-extensor maximal voluntary contractions (MVCs) and countermovement jumps (CMJs) before and after a fatiguing protocol (45-s continuous CMJs). Isometric and dynamic tests were performed 4 h after ingestion of Carn-BA (2 g of L-carnosine and 2 g of β-alanine) or placebo (PLA), in random order. After the fatiguing protocol, blood lactate concentration ([La−]), general and muscular rating of perceived exertion (RPE), and muscle pain (24 and 48 h after the end of the fatiguing protocol) were assessed.Results:During the fatiguing protocol, significant decreases in jump height and increases in contact time were found in both groups from the 15th second onward to the end of the fatiguing protocol. Average contact time and jump height were respectively lower (−7%; P = .018) and higher (+6%; P = .025) in Carn-BA than in PLA. After the fatiguing protocol, MVC decreased in both PLA and Carn-BA, but it was higher in Carn-BA than in PLA (+15%, P = 0.012), while CMJ did not change. Moreover, general RPE was lower and muscle pain at 24 h was higher in Carn-BA than in PLA, whereas muscle RPE and [La−] did not differ between conditions.Conclusions:Ingesting Carn-BA before exercise induced positive effects on MVC and CMJ after the fatiguing protocol and improved CMJ performance during the 45-s continuous jumping effort, even when acutely supplemented. Furthermore, Carn-BA reduced the general RPE and increased muscle pain 24 h after the fatiguing task.


2011 ◽  
Vol 6 (4) ◽  
pp. 559-571 ◽  
Author(s):  
Nathan Elsworthy ◽  
Ben J. Dascombe

Purpose:The main purpose of the present study was to quantify the match running demands and physiological intensities of AF field and boundary umpires during match play.Methods:Thirty-five AF umpires [20 field (age: 24.7 ± 7.7 y, body mass: 74.3 ± 7.1 kg, Σ7 skinfolds: 67.8 ± 18.8 mm); 15 boundary (age: 29.6 ± 13.6 y, body mass: 71.9 ± 3.1 kg, Σ7 skinfolds: 65.6 ± 8.8 mm)] volunteered to participate in the study. Movement characteristics [total distance (TD), average running speed, high-intensity activity (HIA; >14.4 km·h–1) distance] and physiological measures [heart rate, blood lactate concentration ([BLa–]), and rating of perceived exertion] were collected during 20 state-based AF matches.Results:The mean (± SD) TD covered by field umpires was 11,492 ± 1,729 m, with boundary umpires covering 15,061 ± 1,749 m. The average running speed in field umpires was 103 ± 14 m·min-1, and was 134 ± 14 m·min-1 in boundary umpires. Field and boundary umpires covered 3,095 ± 752 m and 5,875 ± 1,590 m, during HIA, respectively. In the first quarter, HIA distance (field: P = .004, η2 = 0.071, boundary: P < .001, η2 = 0.180) and average running speed (field: P = .002, η2 = 0.078, boundary: P < .001, η2 = 0.191) were significantly greater than in subsequent quarters.Conclusions:The results demonstrate that both AF field and boundary umpires complete similar running demands to elite AF players and are subject to physical fatigue. Further research is warranted to see if this physical fatigue impacts on the cognitive function of AF umpires during match play.


Author(s):  
Erik P. Andersson ◽  
Irina Hämberg ◽  
Paulo Cesar Do Nascimento Salvador ◽  
Kerry McGawley

Abstract Purpose This study aimed to compare physiological factors and cycle characteristics during cross-country (XC) roller-skiing at matched inclines and speeds using the double-poling (DP) and diagonal-stride (DS) sub-techniques in junior female and male XC skiers. Methods Twenty-three well-trained junior XC skiers (11 women, 12 men; age 18.2 ± 1.2 yr.) completed two treadmill roller-skiing tests in a randomized order using either DP or DS. The exercise protocols were identical and included a 5 min warm-up, 4 × 5 min submaximal stages, and an incremental test to exhaustion, all performed at a 5° incline. Results No significant three-way interactions were observed between sex, submaximal exercise intensity, and sub-technique. For the pooled sample, higher values were observed for DP versus DS during submaximal exercise for the mean oxygen uptake kinetics response time (33%), energy cost (18%), heart rate (HR) (9%), blood lactate concentration (5.1 versus 2.1 mmol·L−1), rating of perceived exertion (12%), and cycle rate (25%), while cycle length was lower (19%) (all P < 0.001). During the time-to-exhaustion (TTE) test, peak oxygen uptake ($$\dot{V}$$ V ˙ O2peak), peak HR, and peak oxygen pulse were 8%, 2%, and 6% lower, respectively, for DP than DS, with a 29% shorter TTE during DP (pooled data, all P < 0.001). Conclusion In well-trained junior XC skiers, DP was found to exert a greater physiological load than DS during uphill XC roller-skiing at submaximal intensities. During the TTE test, both female and male athletes were able to ski for longer and reached markedly higher $$\dot{V}$$ V ˙ O2peak values when using DS compared to DP.


2018 ◽  
Vol 3 (4) ◽  
pp. 60 ◽  
Author(s):  
Ramires Tibana ◽  
Nuno de Sousa ◽  
Jonato Prestes ◽  
Fabrício Voltarelli

The aim of this study was to analyze blood lactate concentration (LAC), heart rate (HR), and rating perceived exertion (RPE) during and after shorter and longer duration CrossFit® sessions. Nine men (27.7 ± 3.2 years; 11.3 ± 4.6% body fat percentage and training experience: 41.1 ± 19.6 months) randomly performed two CrossFit® sessions (shorter: ~4 min and longer: 17 min) with a 7-day interval between them. The response of LAC and HR were measured pre, during, immediately after, and 10, 20, and 30 min after the sessions. RPE was measured pre and immediately after sessions. Lactate levels were higher during the recovery of the shorter session as compared with the longer session (shorter: 15.9 ± 2.2 mmol/L/min, longer: 12.6 ± 2.6 mmol/L/min; p = 0.019). There were no significant differences between protocols on HR during (shorter: 176 ± 6 bpm or 91 ± 4% HRmax, longer: 174 ± 3 bpm or 90 ± 3% HRmax, p = 0.387). The LAC was significantly higher throughout the recovery period for both training sessions as compared to pre-exercise. The RPE was increased immediately after both sessions as compared to pre-exercise, while there was no significant difference between them (shorter: 8.7 ± 0.9, longer: 9.6 ± 0.5; p = 0.360). These results demonstrated that both shorter and longer sessions induced elevated cardiovascular responses which met the recommendations for gains in cardiovascular fitness. In addition, both training sessions had a high metabolic and perceptual response, which may not be suitable if performed on consecutive days.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ibrahim Ouergui ◽  
Emerson Franchini ◽  
Hamdi Messaoudi ◽  
Hamdi Chtourou ◽  
Anissa Bouassida ◽  
...  

This study investigated the effect of area sizes (4 × 4, 6 × 6, and 8 × 8 m) and effort-pause ratios (free combat vs. 1:2) variation on the physiological and perceptive responses during taekwondo combats (Study 1). In a second study, the effects on physical performance of 8 weeks of small combat-based training added to regular taekwondo training were investigated (Study 2). In random order, 32 male taekwondo athletes performed six (i.e., two effort-to-pause ratios × three area sizes conditions) different 2-min taekwondo combats (Study 1). Thereafter (Study 2), they were randomly assigned to three experimental groups (4 × 4, 6 × 6, and 8 × 8 m) and an active control group (CG). Regarding Study 1, blood lactate concentration [La] before and after each combat, mean heart rate (HRmean) during each combat, and rating of perceived exertion (CR-10) immediately after each combat were assessed. Regarding Study 2, progressive specific taekwondo (PSTT) to estimate maximum oxygen consumption (VO2max), taekwondo-specific agility, and countermovement jump (CMJ) tests were administered before and after 8 weeks of training. Study 1 results showed that 4 × 4 m elicited lower HRmean values compared with 6 × 6 m (d = −0.42 [small], p = 0.030) and free combat induced higher values compared with the 1:2 ratio (d = 1.71 [large], p &lt; 0.001). For [La]post, 4 × 4 m area size induced higher values than 6 × 6 m (d = 0.99 [moderate], p &lt; 0.001) and 8 × 8 m (d = 0.89 [moderate], p &lt; 0.001) and free combat induced higher values than 1:2 ratio (d = 0.69 [moderate], p &lt; 0.001). Higher CR-10 scores were registered after free combat compared with 1:2 ratio (d = 0.44 [small], p = 0.007). For Study 2, VO2max increased after training [F(1, 56) =30.532, p &lt; 0.001; post-hoc: d = 1.27 [large], p &lt; 0.001] with higher values for 4 × 4 m compared with CG (d = 1.15 [moderate], p = 0.009). Agility performance improved after training [F(1, 56) = 4.419, p = 0.04; post-hoc: d = −0.46 [small], p = 0.04] and 4 × 4 m induced lower values in comparison with 6 × 6 m (d = −1.56 [large], p = 0.001) and CG (d = −0.77 [moderate], p = 0.049). No training type influenced CMJ performance. Smaller area size elicited contrasting results in terms of metabolic demand compared with larger sizes (i.e., lower HRmean but higher [La] and CR-10), whereas free combat induced variables' consistently higher values compared with imposed 1:2 ratio (Study 1). Taekwondo training is effective to improve VO2max and agility (Study 2), but small combat training modality should be investigated further.


2018 ◽  
Vol 13 (10) ◽  
pp. 1324-1330
Author(s):  
Enzo Hollville ◽  
Vincent Le Croller ◽  
Yoshihiro Hirasawa ◽  
Rémi Husson ◽  
Giuseppe Rabita ◽  
...  

Purpose: To evaluate the effect of multiple sets of repeated-sprint-ability (RSA)-induced fatigue on subsequent passing-skill performance in field hockey players. Methods: A total of 10 elite U-21 (under-21) male field hockey players performed 5 sets of a combination of RSA test (6 × 20 m, 20 s of passive recovery) followed by a 1-min passing-skill test (passing reception with subsequent passes at a predesigned target). Data on fastest sprint time and cumulated sprint time for RSA test; total number of balls played, targeted, and passing accuracy (number of balls targeted/total number of balls played) for passing-skill test; heart rate (HR), blood lactate concentration (BLa), and rating of perceived exertion (RPE)  were collected throughout the protocol. Results: RSA performance was significantly impaired from set 1 to set 5 (fastest sprint time +4.1%, P < .001; cumulated sprint time +2.3%, P < .01). For a similar average number of balls played (12.8 [1.4]) during each set, number of balls targeted (−1.7%, P < .05) and passing accuracy (−3.1%, P < .05) decreased up to the third set before reimproving over the last 2 sets. Psychophysiological responses (HR, BLa, and RPE) progressively increased (P < .05) toward protocol cessation. The decrease in passing accuracy with increasing RSA cumulated sprint time was fitted to a 2nd-order polynomial function (r2 = .94, P < .05). Conclusion: Multiple-set RSA-induced fatigue was accompanied by passing-skill adjustment variation, suggesting a complex interaction between physiological and psychological/cognitive function to preserve passing skill under fatigued condition.


Sports ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 23
Author(s):  
Gavriil G. Arsoniadis ◽  
Ioannis S. Nikitakis ◽  
Petros G. Botonis ◽  
Ioannis Malliaros ◽  
Argyris G. Toubekis

Background: Physiological and biomechanical parameters obtained during testing need validation in a training setting. The purpose of this study was to compare parameters calculated by a 5 × 200-m test with those measured during an intermittent swimming training set performed at constant speed corresponding to blood lactate concentration of 4 mmol∙L−1 (V4). Methods: Twelve competitive swimmers performed a 5 × 200-m progressively increasing speed front crawl test. Blood lactate concentration (BL) was measured after each 200 m and V4 was calculated by interpolation. Heart rate (HR), rating of perceived exertion (RPE), stroke rate (SR) and stroke length (SL) were determined during each 200 m. Subsequently, BL, HR, SR and SL corresponding to V4 were calculated. A week later, swimmers performed a 5 × 400-m training set at constant speed corresponding to V4 and BL-5×400, HR-5×400, RPE-5×400, SR-5×400, SL-5×400 were measured. Results: BL-5×400 and RPE-5×400 were similar (p > 0.05), while HR-5×400 and SR-5×400 were increased and SL-5×400 was decreased compared to values calculated by the 5 × 200-m test (p < 0.05). Conclusion: An intermittent progressively increasing speed swimming test provides physiological information with large interindividual variability. It seems that swimmers adjust their biomechanical parameters to maintain constant speed in an aerobic endurance training set of 5 × 400-m at intensity corresponding to 4 mmol∙L−1.


Sign in / Sign up

Export Citation Format

Share Document