scholarly journals Relationship Between Tethered Swimming in a Flume and Swimming Performance

2020 ◽  
Vol 15 (8) ◽  
pp. 1087-1094
Author(s):  
Jesús J. Ruiz-Navarro ◽  
Pedro G. Morouço ◽  
Raúl Arellano

Purpose: To study the relationship between tethered swimming in a flume at different speeds and swimming performance. Methods: Sixteen regional-level swimmers performed 25-, 50-, and 100-m front-crawl trials and four 30-s tethered-swimming tests at 0, 0.926, 1.124, and 1.389 m·s−1 water-flow velocities. Average and maximum force, average and maximum impulse, and intracyclic force variation (dF) were estimated for each tethered-swimming trial. Swimming velocity and intracyclic velocity variation (dv) were obtained for each free-swimming trial. Stroke rate and rating of perceived exertion (RPE) were registered for all trials. Results: Tethered-swimming variables, both at 1.124 m·s−1 and at 1.389 m·s−1 water-flow velocities, were positively associated with 25-m swimming velocity (P < .05). Average force and maximum impulse in stationary swimming were significantly associated with 25-m swimming velocity (P < .05). A positive relationship between water-flow velocities with dF was observed. Swimming performance was not related to dF or dv. Neither stroke rate nor RPE differed between the 4 tethered conditions and mean 50-m free-swimming velocity (P > .05). Conclusions: Measuring force in a swimming flume at higher water-flow velocities is a better indicator of performance than stationary tethered swimming. It enables assessment of the ability to effectively apply force in the water.

2018 ◽  
Vol 13 (7) ◽  
pp. 897-902 ◽  
Author(s):  
Pedro G. Morouço ◽  
Tiago M. Barbosa ◽  
Raul Arellano ◽  
João P. Vilas-Boas

Context: In front-crawl swimming, the upper limbs perform alternating movements with the aim of achieving a continuous application of force in the water, leading to lower intracyclic velocity variation (dv). This parameter has been identified as a crucial criterion for swimmers’ evaluation. Purpose: To examine the assessment of intracyclic force variation (dF) and to analyze its relationship with dv and swimming performance. Methods: A total of 22 high-level male swimmers performed a maximal-effort 50-m front-crawl time trial and a 30-s maximal-effort fully tethered swimming test, which were randomly assigned. Instantaneous velocity was obtained by a speedometer and force by a strain-gauge system. Results: Similarity was observed between the tests, with dF attaining much higher magnitudes than dv (P < .001; d = 8.89). There were no differences in stroke rate or in physiological responses between tethered and free swimming, with a high level of agreement for the stroke rate and blood lactate increase. Swimming velocity presented a strong negative linear relationship with dF (r = −.826, P < .001) and a moderate negative nonlinear relationship with dv (r = .734, P < .01). With the addition of the maximum impulse to dF, multiple-regression analysis explained 83% of the free-swimming performance. Conclusions: Assessing dF is a promising approach for evaluating a swimmer’s performance. From the experiments, this new parameter showed that swimmers with higher dF also present higher dv, leading to a decrease in performance.


2008 ◽  
Vol 20 (2) ◽  
pp. 49
Author(s):  
AN Bosch ◽  
M Medonca

Objective. The aim of this study was to determine any difference in performance following two different tapering protocols after a period of heavy training. Design. Twelve swimmers who regularly trained at a high volume and intensity were recruited and trained together for 3 weeks. They were then randomly split into two groups (N=6 per group). One group underwent a standard taper protocol, while the second followed a modified taper in which training load was gradually resumed for 1 week following a standard taper. Performance assessment following tapering consisted of 2 swims over a distance of 200 m, with a recovery period of 5 hours between swims. After resuming normal training, subjects tapered a second time, each group following the alternate protocol. Outcome measures. Total time and split times for each length, stroke rate, distance per stroke, and stroke index in a performance swim were determined as well as heart rate (HR), profile of mood state (POMS), rating of perceived exertion (RPE) and muscle pain during each taper. Results. Mean swim times for the modified and conventional tapers were 134.7±9.1 and 134.7±9.3 seconds, respectively (mean ±SD). There was also no difference in the split times between groups, although both became slower in the final three laps. Stroke rate, distance per stroke, and stroke index were also not different between protocols. There were no differences between protocols in HR, RPE or rating of muscle pain over the duration of the tapering period. However, there was a significant reduction in HR on day 5 of both tapers and a lower POMS on days 3, 4 and 5 on the standard taper protocol. At the time of the performance swim, however, there was no difference in POMS. Conclusion. There were no performance or physiological advantages from the modified tapering protocol. South African Journal of Sports Medicine Vol. 20 (2) 2008: pp. 49-54


2019 ◽  
Vol 66 (1) ◽  
pp. 131-141
Author(s):  
Petros G. Botonis ◽  
Argyris G. Toubekis ◽  
Theodoros I. Platanou

AbstractWe investigated the effectiveness of a short-duration training period including an overloaded (weeks 1 and 2) and a reduced training load period (weeks 3 and 4) on wellness, swimming performance and a perceived internal training load in eight high-level water-polo players preparing for play-offs. The internal training load was estimated daily using the rating of perceived exertion (RPE) and session duration (session-RPE). Perceived ratings of wellness (fatigue, muscle soreness, sleep quality, stress level and mood) were assessed daily. Swimming performance was evaluated through 400-m and 20-m tests performed before (baseline) and after the end of weeks 2 and 4. In weeks 3 and 4, the internal training load was reduced by 19.0 ± 3.8 and 36.0 ± 4.7%, respectively, compared to week 1 (p = 0.00). Wellness was improved in week 4 (20.4 ± 2.8 AU) compared to week 1 and week 2 by 16.0 ± 2.2 and 17.3 ± 2.9 AU, respectively (p =0.001). At the end of week 4, swimming performance at 400-m and 20-m tests (299.0 ± 10.2 and 10.2 ± 0.3 s) was improved compared to baseline values (301.4 ± 10.9 and 10.4 ± 0.4 s, p < 0.05) and the overloading training period (week 2; 302.9 ± 9.0 and 10.4 ± 0.4 s, p < 0.05). High correlations were observed between the percentage reduction of the internal training load from week 4 to week 1 (-25.3 ± 5.5%) and the respective changes in 20-m time (-2.1 ± 2.2%, r = 0.88, p < 0.01), fatigue perception (39.6 ± 27.1%), muscle soreness (32.5 ± 26.6%), stress levels (25.6 ± 15.1%) and the overall wellness scores (28.6 ± 21.9%, r = 0.74-0.79, p < 0.05). The reduction of the internal training load improved the overall perceived wellness and swimming performance of players. The aforementioned periodization approach may be an effective training strategy in the lead-up to play-off tournaments.


2019 ◽  
Vol 14 (9) ◽  
pp. 1244-1249 ◽  
Author(s):  
Chelsie E. Winchcombe ◽  
Martyn J. Binnie ◽  
Matthew M. Doyle ◽  
Cruz Hogan ◽  
Peter Peeling

Purpose: To determine the reliability and validity of a power-prescribed on-water (OW) graded exercise test (GXT) for flat-water sprint kayak athletes. Methods: Nine well-trained sprint kayak athletes performed 3 GXTs in a repeated-measures design. The initial GXT was performed on a stationary kayak ergometer in the laboratory (LAB). The subsequent 2 GXTs were performed OW (OW1 and OW2) in an individual kayak. Power output (PWR), stroke rate, blood lactate, heart rate, oxygen consumption, and rating of perceived exertion were measured throughout each test. Results: Both PWR and oxygen consumption showed excellent test–retest reliability between OW1 and OW2 for all 7 stages (intraclass correlation coefficient > .90). The mean results from the 2 OW GXTs (OWAVE) were then compared with LAB, and no differences in oxygen consumption across stages were evident (P ≥ .159). PWR was higher for OWAVE than for LAB in all stages (P ≤ .021) except stage 7 (P = .070). Conversely, stroke rate was lower for OWAVE than for LAB in all stages (P < .010) except stage 2 (P = .120). Conclusions: The OW GXT appears to be a reliable test in well-trained sprint kayak athletes. Given the differences in PWR and stroke rate between the LAB and OW tests, an OW GXT may provide more specific outcomes for OW training.


Motricidade ◽  
2018 ◽  
Vol 14 (4) ◽  
pp. 103-112 ◽  
Author(s):  
Valdir Junior ◽  
Alexandre Medeiros ◽  
Kelly Jesus ◽  
Nuno Domingos Garrido ◽  
Rui Corredeira ◽  
...  

The evaluation of swimming technique is one of the main aspects to be considered in any training program, with biomechanics being an important source of knowledge. It was our objective to characterize the biomechanical parameters (SL and SF) relating them to the swimming velocity (v) at different intensities and to analyze within each swimming stroke cycle the intra-cyclic velocity variation (IVV) in a group of motor disabled swimmers. Eight disabled male swimmers (25.83 ± 2.93 years old, 72.45 ± 9.26 kg body mass and 1.79 ± 0.11 m of height) of the following functional classes: S6 (n = 1), S8 (n = 2) and S9 (n = 5) participated in this study. Swimmers were evaluated in the kinematic parameters v, stroke frequency (SF) and stroke length (SL) along with an incremental protocol of 6 x 200 m in the the crawl stroke. Data were registered in each step at the distances of 100 and 175 m. With increasing velocity, the mean values of SL decreased while the mean values of SF increased. To achieve higher swimming velocities, swimmers compensated the lack of the propulsive segment increasing SF to increase swimming speed. For the mean values of IVV at 100m distance, a decrease between the first and second levels, followed by a tendency to stabilize from the 2nd to the 6th level is presented. For the 175 m distance, there was a decrease in IVV with an increase in swimming velocity. Stroke frequency is directly related to the magnitude of IVV, which directly influences swimming performance.


2012 ◽  
Vol 34 (1) ◽  
pp. 112-118 ◽  
Author(s):  
Daniel López-Plaza ◽  
Fernando Alacid ◽  
Pedro A. López-Miñarro ◽  
José M. Muyor

AbstractThe purpose of this study was to determine the influence of different sizes of hand paddles on kinematicparameters during a 100 m freestyle swimming performance in elite swimmers. Nine elite swimmers (19.1 ± 1.9 years)completed three tests of 100 m without paddles, with small paddles (271.27 cm2) and with large paddles (332.67 cm2),respectively. One video camera was used to record the performance during the three trials. The mean swimmingvelocity, stroke rate and stroke length were measured in the central 10 meters of each 50 m length. The results showedthat stroke length tended to increase significantly when wearing hand paddles (p < 0.05) during both the first andsecond 50 m sections whereas the increase in swimming velocity occurred only in the second 50 m (p < 0.05).Conversely, the stroke rate showed a slight decreasing trend with increasing paddle size. During the 100 m freestyletrial the stroke kinematics were changed significantly as a result of the increase in propelling surface size when handpaddles were worn.


Author(s):  
Madeline Ranum ◽  
Carl Foster ◽  
Clayton Camic ◽  
Glenn Wright ◽  
Flavia Guidotti ◽  
...  

The aerobic cost of running (CR), an important determinant of running performance, is usually measured during constant speed running. However, constant speed does not adequately reflect the nature of human locomotion, particularly competitive races, which include stochastic variations in pace. Studies in non-athletic individuals suggest that stochastic variations in running velocity produce little change in CR. This study was designed to evaluate whether variations in running speed influence CR in trained runners. Twenty competitive runners (12 m, VO2max = 73 ± 7 mL/kg; 8f, VO2max = 57 ± 6 mL/kg) ran four 6-minute bouts at an average speed calculated to require ~90% ventilatory threshold (VT) (measured using both v-slope and ventilatory equivalent). Each interval was run with minute-to-minute pace variation around average speed. CR was measured over the last 2 min. The coefficient of variation (CV) of running speed was calculated to quantify pace variations: ±0.0 m∙s−1 (CV = 0%), ±0.04 m∙s−1 (CV = 1.4%), ±0.13 m∙s−1(CV = 4.2%), and ±0.22 m∙s−1(CV = 7%). No differences in CR, HR, or blood lactate (BLa) were found amongst the variations in running pace. Rating of perceived exertion (RPE) was significantly higher only in the 7% CV condition. The results support earlier studies with short term (3s) pace variations, that pace variation within the limits often seen in competitive races did not affect CR when measured at running speeds below VT.


Motor Control ◽  
2021 ◽  
pp. 1-12
Author(s):  
Karini Borges dos Santos ◽  
Paulo Cesar Barauce Bento ◽  
Carl Payton ◽  
André Luiz Felix Rodacki

This study described the kinematic variables of disabled swimmers’ performance and correlated them with their functional classification. Twenty-one impaired swimmers (S5–S10) performed 50-m maximum front-crawl swimming while being recorded by four underwater cameras. Swimming velocity, stroke rate, stroke length, intracycle velocity variation, stroke dimensions, hand velocity, and coordination index were analyzed. Kendall rank was used to correlate stroke parameters and functional classification with p < .05. Swimming velocity, stroke length, and submerged phase were positively correlated with the para swimmers functional classification (.61, .50, and .41; p < .05, respectively), while stroke rate, velocity hand for each phase, coordination index, and intracyclic velocity variation were not (τ between −.11 and .45; p > .05). Thus, some objective kinematic variables of the impaired swimmers help to support current classification. Improving hand velocity seems to be a crucial point to be improved among disabled swimmers.


Author(s):  
Sofiene Amara ◽  
Tiago M. Barbosa ◽  
Yassine Negra ◽  
Raouf Hammami ◽  
Riadh Khalifa ◽  
...  

This study aimed to examine the effect of 9 weeks of concurrent resistance training (CRT) between resistance on dry land (bench press (BP) and medicine ball throw) and resistance in water (water parachute and hand paddles) on muscle strength, sprint swimming performance and kinematic variables compared by the usual training (standard in-water training). Twenty-two male competitive swimmers participated in this study and were randomly allocated to two groups. The CRT group (CRTG, age = 16.5 ± 0.30 years) performed a CRT program, and the control group (CG, age = 16.1 ± 0.32 years) completed their usual training. The independent variables were measured pre- and post-intervention. The findings showed that the one-repetition maximum bench press (1RM BP) was improved only after a CRT program (d = 2.18; +12.11 ± 1.79%). Moreover, all sprint swimming performances were optimized in the CRT group (d = 1.3 to 2.61; −4.22 ± 0.18% to −7.13 ± 0.23%). In addition, the findings revealed an increase in velocity and stroke rate (d = 1.67, d = 2.24; 9.36 ± 2.55%, 13.51 ± 4.22%, respectively) after the CRT program. The CRT program improved the muscle strength, which, in turn, improved the stroke rate, with no change in the stroke length. Then, the improved stroke rate increased the swimming velocity. Ultimately, a faster velocity leads to better swim performances.


2016 ◽  
Vol 11 (5) ◽  
pp. 602-607 ◽  
Author(s):  
Jeanne Dekerle ◽  
James Paterson

Purpose:To examine muscle fatigue of the shoulder internal rotators alongside swimming biomechanics during long-duration submaximal swimming sets performed in 2 different speed domains.Methods:Eight trained swimmers (mean ± SD 20.5 ± 0.9 y, 173 ± 10 cm, 71.3 ± 10.0 kg) raced over 3 distances (200-, 400-, 800-m races) for determination of critical speed (CS; slope of the distance–time relationship). After a familiarization with muscle isokinetic testing, they subsequently randomly performed 2 constant-speed efforts (6 × 5-min blocks, 2.5-min recovery) 5% above (T105) and 5% below CS (T95) with maximal voluntary contractions recorded between swimming blocks.Results:Capillary blood lactate concentration ([La]), rating of perceived exertion (RPE), peak torque, stroke length, and stroke rate were maintained throughout T95 (P < .05). [La], RPE, and stroke rate increased alongside concomitant decreases in maximal torque and stroke length during T105 (P < .05) with incapacity of the swimmers to maintain the pace for longer than ~20 min. For T105, changes in maximal torque (35.0 ± 14.9 to 25.8 ± 12.1 Nm) and stroke length (2.66 ± 0.36 to 2.23 ± 0.24 m/cycle) were significantly correlated (r = .47, P < .05).Conclusion:While both muscle fatigue (shoulder internal rotators) and task failure occur when swimming at a pace greater than CS, the 2.5-min recovery period during the sub-CS set possibly alleviated the development of muscle fatigue for the pace to be sustainable for 6 × 5 min at 95% of CS. A causal relationship between reduction in stroke length and loss of muscle strength should be considered very cautiously in swimming.


Sign in / Sign up

Export Citation Format

Share Document