Workload Differences Between Training Drills and Competition in Elite Netball

2020 ◽  
Vol 15 (10) ◽  
pp. 1385-1392
Author(s):  
Marni J. Simpson ◽  
David G. Jenkins ◽  
Vincent G. Kelly

Purpose: To examine potential differences in internal and external workload variables between playing positions and between training drills and games within an elite netball team during training and competition. Methods: Nine elite female netballers were monitored during 15 games and all training sessions over 28 weeks. Workload variables assessed were relative PlayerLoad (PL per minute), accelerations, decelerations, jumps, changes of direction, high-intensity events, medium-intensity events, low-intensity events, PL in a forward direction, PL in a sideways direction, PL in a vertical direction, and summated heart-rate zones using heart-rate monitors and inertial measurement units. Results: Conditioning and match play during training were the only drills that matched or exceeded game workloads. Workloads during small-sided games were lower than game workloads for all variables. In games, goalkeeper, goal attack, and goal shooter had a greater frequency of jumps compared with other positions. Midcourt positions had a greater frequency of low-intensity events in a game. Conclusions: Workloads during small-sided games were lower than game workloads across all external and internal variables; therefore, netball staff should modify these small-sided games if they wish them to develop game-based qualities. Specific game workload variables indicate that there are differences within some positional groups; coaches need to be aware that positional groupings may fail to account for differences in workload between individual playing positions.

2020 ◽  
Vol 15 (6) ◽  
pp. 841-846 ◽  
Author(s):  
Marni J. Simpson ◽  
David G. Jenkins ◽  
Aaron T. Scanlan ◽  
Vincent G. Kelly

Purpose: To examine relationships between external- and internal-workload variables in an elite female netball team, with consideration of positional differences. Methods: Nine elite female netball athletes had their weekly workloads monitored across their preseason and competition phases of a season. Internal workload was determined using summated heart-rate (HR) zones and session ratings of perceived exertion (sRPE), whereas external workload was determined using inertial movement units and included absolute PlayerLoad (PL), relative PL (PL per minute), accelerations (ACCEL), decelerations (DECEL), jumps, changes of direction (COD), high-intensity events, medium-intensity events, low-intensity events, PL in the forward direction, PL in the sideways direction, and PL in the vertical direction. Relationships between external- and internal-workload variables in the team and relative to playing position were examined. Results: Across the team, the strongest external workloads that correlated with summated HR zones were PL (r = .65), COD (r = .64), ACCEL (r = .61), and DECEL (r = .61). The strongest external workloads that correlated with sRPE were COD (r = .79), followed by jumps (r = .76), ACCEL (r = .75), and DECEL (r = .75). For all positions, except-goal shooter, the strongest correlation was between PL and sRPE (r = .88–.94). In the goal-shooter position, the strongest correlation was between summated HR zones and DECEL (r = .89). Conclusions: The inertial movement unit-derived external-workload variables are strongly related to common internal-workload variables. In particular, COD and sRPE appear to provide a good monitoring combination of external and internal training loads for elite netball players.


Author(s):  
Zahari Taha ◽  
Rabiu Muazu Musa ◽  
Mohammad Razali Abdullah ◽  
Mohd Azrai Mohd Razman ◽  
Chei Ming Lee ◽  
...  

The requirement for objective techniques to observe physical action in its distinctive measurements has prompted the improvement and broad utilisation of motion sensors called Inertial Measurement Units (IMUs), which measures bodily movements. However, although these sensors have been utilised to measure postural balance in both clinical and some specific sports, little or no effort have been made to apply these sensors to the measurement of other physiological indicators in the sport of archery. This study aims to ascertain the postural balance, hand movement, muscular activation as well as heart rate of an archer. An archer was instructed to perform two balance standings, two hand movements and his muscular activations of flexor and extensor digitorum, as well as heart rate, were recorded using Shimmer sensors. The mean movement of x and y-axis of the archer was used to correlate with the Pearson correlation for testing the validity of the sensors. Kolmogorov/Smirnov test was utilised to measure the reliability of the sensors over test re-test in two different tests. The coefficient of determination indicates some positive and negative significant relationships between some indicators. The Kolmogorov/Smirnov test re-test reveals a significant difference between all the indicators in both tests A and B, p < 0.001. The archer was able to present two types of postural standings and exhibited two hands movement while holding the bow. However, his heart rate demonstrated some variability during the executions of the movement in both tests. Thus, it could be concluded that the fusion sensors are reliable in measuring the aforementioned physiological indicators.


Sensors ◽  
2020 ◽  
Vol 20 (21) ◽  
pp. 5971
Author(s):  
José M. Oliva-Lozano ◽  
Elisa F. Maraver ◽  
Víctor Fortes ◽  
José M. Muyor

The development of wearable sensors has allowed the analysis of trunk kinematics in match play, which is necessary for a better understanding of the postural demands of the players. The aims of this study were to analyze the postural demands of professional soccer players by playing position. A longitudinal study for 13 consecutive microcycles, which included one match per microcycle, was conducted. Wearable sensors with inertial measurement units were used to collect the percentage (%) of playing time spent and G-forces experienced in different trunk inclinations and the inclination required for different speeds thresholds. The inclination zone had a significant effect on the time percentage spent on each zone (p < 0.001, partial eta-squared (ηp2 = 0.85) and the G-forces experienced by the players (p < 0.001, ηp2 = 0.24). Additionally, a significant effect of the speed variable on the trunk inclination zones was found, since trunk flexion increased with greater speeds (p < 0.001; ηp2 = 0.73), except for midfielders. The players spent most of the time in trunk flexion between 20° and 40°; the greatest G-forces were observed in trunk extension zones between 0° and 30°, and a linear relationship between trunk inclination and speed was found. This study presents a new approach for the analysis of players’ performance. Given the large volumes of trunk flexion and the interaction of playing position, coaches are recommended to incorporate position-specific training drills aimed to properly prepare the players for the perception-action demands (i.e., visual exploration and decision-making) of the match, as well as trunk strength exercises and other compensatory strategies before and after the match.


2017 ◽  
Vol 3 (1) ◽  
pp. 7-10 ◽  
Author(s):  
Jan Kuschan ◽  
Henning Schmidt ◽  
Jörg Krüger

Abstract:This paper presents an analysis of two distinct human lifting movements regarding acceleration and angular velocity. For the first movement, the ergonomic one, the test persons produced the lifting power by squatting down, bending at the hips and knees only. Whereas performing the unergonomic one they bent forward lifting the box mainly with their backs. The measurements were taken by using a vest equipped with five Inertial Measurement Units (IMU) with 9 Dimensions of Freedom (DOF) each. In the following the IMU data captured for these two movements will be evaluated using statistics and visualized. It will also be discussed with respect to their suitability as features for further machine learning classifications. The reason for observing these movements is that occupational diseases of the musculoskeletal system lead to a reduction of the workers’ quality of life and extra costs for companies. Therefore, a vest, called CareJack, was designed to give the worker a real-time feedback about his ergonomic state while working. The CareJack is an approach to reduce the risk of spinal and back diseases. This paper will also present the idea behind it as well as its main components.


2021 ◽  
pp. 1-19
Author(s):  
Thomas Rietveld ◽  
Barry S. Mason ◽  
Victoria L. Goosey-Tolfrey ◽  
Lucas H. V. van der Woude ◽  
Sonja de Groot ◽  
...  

2020 ◽  
pp. 1-1
Author(s):  
Hailong Rong ◽  
Yanping Zhu ◽  
Jidong Lv ◽  
Cuiyun Peng ◽  
Ling Zou

2020 ◽  
Vol 6 (3) ◽  
pp. 237-240
Author(s):  
Simon Beck ◽  
Bernhard Laufer ◽  
Sabine Krueger-Ziolek ◽  
Knut Moeller

AbstractDemographic changes and increasing air pollution entail that monitoring of respiratory parameters is in the focus of research. In this study, two customary inertial measurement units (IMUs) are used to measure the breathing rate by using quaternions. One IMU was located ventral, and one was located dorsal on the thorax with a belt. The relative angle between the quaternion of each IMU was calculated and compared to the respiratory frequency obtained by a spirometer, which was used as a reference. A frequency analysis of both signals showed that the obtained respiratory rates vary slightly (less than 0.2/min) between the two systems. The introduced belt can analyse the respiratory rate and can be used for surveillance tasks in clinical settings.


Sign in / Sign up

Export Citation Format

Share Document