Bench Press 1-Repetition Maximum Estimation Through the Individualized Load–Velocity Relationship: Comparison of Different Regression Models and Minimal Velocity Thresholds

Author(s):  
Danica Janicijevic ◽  
Ivan Jukic ◽  
Jonathon Weakley ◽  
Amador García-Ramos

Purpose: To compare the accuracy of nine 1-repetition maximum (1RM) prediction methods during the paused and touch-and-go bench press exercises performed in a Smith machine. Method: A total of 86 men performed 2 identical sessions (incremental loading test until reaching the 1RM followed by a set to failure) in a randomized order during the paused and touch-and-go bench press exercises. Individualized load–velocity relationships were modeled by linear and polynomial regression models considering 4 loads (45%–60%–75%–90% of 1RM) (multiple-point methods) and considering only 2 loads (45%–90% of 1RM) by a linear regression (2-point method). Three minimal velocity thresholds were used: the general velocity of 0.17 m·s−1 (general velocity of the 1RM [V1RM]), the velocity obtained when lifting the 1RM load (individual V1RM), and the velocity obtained during the last repetition of a set to failure. Results: The 1RM prediction methods were generally valid (range: r = .96–.99, standard error of the estimate = 2.8–4.9 kg or 4.6%–8.0% of 1RM). The multiple-point linear method (2.79 [2.29] kg) was more precise than the multiple-point polynomial method (3.54 [3.31] kg; P = .013), but no significant differences were observed when compared with the 2-point method (3.09 [2.66] kg, P = .136). The velocity of the last repetition of a set to failure (3.47 [2.97] kg) was significantly less precise than the individual V1RM (2.91 [2.75] kg, P = .009) and general V1RM (3.00 [2.65] kg, P = .010). Conclusions: Linear regression models and a general minimal velocity threshold of 0.17 m·s−1 should be recommended to obtain a quick and precise estimation of the 1RM during the bench press exercise performed in a Smith machine.

2021 ◽  
pp. 1-9
Author(s):  
Alejandro Pérez-Castilla ◽  
John F.T. Fernandes ◽  
Amador García-Ramos

BACKGROUND: More practical and less fatiguing strategies have been developed to accurately predict the one-repetition maximum (1RM). OBJETIVE: To compare the accuracy of the estimation of the free-weight bench press 1RM between six velocity-based 1RM prediction methods. METHODS: Sixteen men performed an incremental loading test until 1RM on two separate occasions. The first session served to determine the minimal velocity threshold (MVT). The second session was used to determine the validity of the six 1RM prediction methods based on 2 repetition criteria (fastest or average velocity) and 3 MVTs (general MVT of 0.17 m⋅s-1, individual MVT of the preliminary session, and individual MVT of the validity session). Five loads (≈ 2540557085% of 1RM) were used to assess the individualized load-velocity relationships. RESULTS: The absolute difference between the actual and predicted 1RM were low (range = 2.7–3.7%) and did not reveal a significant main effect for repetition criterion (P= 0.402), MVT (P= 0.173) or their two-way interaction (P= 0.354). Furthermore, all 1RM prediction methods accurately estimated bench press 1RM (P⩾ 0.556; ES ⩽ 0.02; r⩾ 0.99). CONCLUSIONS: The individualized load-velocity relationship provides an accurate prediction of the 1RM during the free-weight bench press exercise, while the repetition criteria and MVT do not appear to meaningfully affect the prediction accuracy.


2020 ◽  
Vol 15 (3) ◽  
pp. 337-346 ◽  
Author(s):  
Alejandro Pérez-Castilla ◽  
Daniel Jerez-Mayorga ◽  
Dario Martínez-García ◽  
Ángela Rodríguez-Perea ◽  
Luis J Chirosa-Ríos ◽  
...  

This study examined the differences in the bench press one-repetition maximum obtained by three different methods (direct method, lifts-to-failure method, and two-point method). Twenty young men were tested in four different sessions. A single grip width (close, medium, wide, or self-selected) was randomly used on each session. Each session consisted of an incremental loading test until reaching the one-repetition maximum, followed by a single set of lifts-to-failure against the 75% one-repetition maximum load. The last load lifted during the incremental loading test was considered the actual one-repetition maximum (direct method). The one-repetition maximum was also predicted using the Mayhew’s equation (lifts-to-failure method) and the individual load–velocity relationship modeled from two data points (two-point method). The actual one-repetition maximum was underestimated by the lifts-to-failure method (range: 1–2 kg) and overestimated by the two-point method (range: –3 to –1 kg), being these differences accentuated using closer grip widths. All predicted one-repetition maximums were practically perfectly correlated with the actual one-repetition maximum ( r ≥  0.95; standard error of the estimate ≤ 4 kg). The one-repetition maximum was higher using the medium grip width (83 ± 3 kg) compared to the close (80 ± 3 kg) and wide (79 ± 3 kg) grip widths ( P ≤  0.025), while no significant differences were observed between the medium and self-selected (81 ± 3 kg) grip widths ( P =  1.000). In conclusion, although both the Mayhew’s equation and the two-point method are able to predict the actual one-repetition maximum with an acceptable precision, the differences between the actual and predicted one-repetition maximums seem to increase when using close grip widths.


Author(s):  
Elias J. G. Caven ◽  
Tom J. E. Bryan ◽  
Amelia F. Dingley ◽  
Benjamin Drury ◽  
Amador Garcia-Ramos ◽  
...  

This study examined the accuracy of different velocity-based methods in the prediction of bench press and squat one-repetition maximum (1RM) in female athletes. Seventeen trained females (age 17.8 ± 1.3 years) performed an incremental loading test to 1RM on bench press and squat with the mean velocity being recorded. The 1RM was estimated from the load–velocity relationship using the multiple- (8 loads) and two-point (2 loads) methods and group and individual minimum velocity thresholds (MVT). No significant effect of method, MVT or interaction was observed for the two exercises (p > 0.05). For bench press and squat, all prediction methods demonstrated very large to nearly perfect correlations with respect to the actual 1RM (r range = 0.76 to 0.97). The absolute error (range = 2.1 to 3.8 kg) for bench press demonstrated low errors that were independent of the method and MVT used. For squat, the favorable group MVT errors for the multiple- and two-point methods (absolute error = 7.8 and 9.7 kg, respectively) were greater than the individual MVT errors (absolute error = 4.9 and 6.3 kg, respectively). The 1RM can be accurately predicted from the load–velocity relationship in trained females, with the two-point method offering a quick and less fatiguing alternative to the multiple-point method.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e8760 ◽  
Author(s):  
Amador García-Ramos ◽  
Danica Janicijevic ◽  
Jorge M. González-Hernández ◽  
Justin W.L. Keogh ◽  
Jonathon Weakley

Background This study aimed to determine the reliability of the velocity achieved during the last repetition of sets to failure (Vlast) and the association of Vlast with the velocity of the 1-repetition maximum (V1RM) during the paused and touch-and-go bench press (BP) exercises performed in a Smith machine. Methods A total of 96 healthy men participated in this study that consisted of two testing sessions. A single BP variant (paused BP or touch-and-go BP) was evaluated on each session in a randomized order. Each session consisted of an incremental loading test until reaching the 1RM, followed by two sets of repetitions to failure against a load ranging from 75% to 90% of 1RM. Results The reliability of Vlast was unacceptable for both BP variants (CV > 18.3%, ICC < 0.60). The correlations between V1RM and Vlast were small for the paused BP (r = 0.18) and moderate for the touch-and-go BP (r = 0.37). Conclusions Although these results suggest that Vlast could be a better indicator of the minimal velocity threshold than V1RM, the low reliability of Vlast and the similar values of Vlast for both BP variants suggest that a standard V1RM should be used to estimate the 1RM from the individualized load-velocity relationship.


2018 ◽  
Vol 13 (3) ◽  
pp. 326-331 ◽  
Author(s):  
Amador García-Ramos ◽  
Francisco Luis Pestaña-Melero ◽  
Alejandro Pérez-Castilla ◽  
Francisco Javier Rojas ◽  
Guy Gregory Haff

Purpose: To compare the load–velocity relationship between 4 variants of the bench-press (BP) exercise. Methods: The full load–velocity relationship of 30 men was evaluated by means of an incremental loading test starting at 17 kg and progressing to the individual 1-repetition maximum (1RM) in 4 BP variants: concentric-only BP, concentric-only BP throw (BPT), eccentric-concentric BP, and eccentric-concentric BPT. Results: A strong and fairly linear relationship between mean velocity (MV) and %1RM was observed for the 4 BP variants (r2 > .96 for pooled data and r2 > .98 for individual data). The MV associated with each %1RM was significantly higher in the eccentric-concentric technique than in the concentric-only technique. The only significant difference between the BP and BPT variants was the higher MV with the light to moderate loads (20–70%1RM) in the BPT using the concentric-only technique. MV was significantly and positively correlated between the 4 BP variants (r = .44–.76), which suggests that the subjects with higher velocities for each %1RM in 1 BP variant also tend to have higher velocities for each %1RM in the 3 other BP variants. Conclusions: These results highlight the need for obtaining specific equations for each BP variant and the existence of individual load–velocity profiles.


2018 ◽  
Vol 13 (4) ◽  
pp. 474-481 ◽  
Author(s):  
Amador García-Ramos ◽  
Guy Gregory Haff ◽  
Francisco Luis Pestaña-Melero ◽  
Alejandro Pérez-Castilla ◽  
Francisco Javier Rojas ◽  
...  

2018 ◽  
Vol 34 (3) ◽  
pp. 184-190 ◽  
Author(s):  
Francisco Luis Pestaña-Melero ◽  
G. Gregory Haff ◽  
Francisco Javier Rojas ◽  
Alejandro Pérez-Castilla ◽  
Amador García-Ramos

This study aimed to compare the between-session reliability of the load–velocity relationship between (1) linear versus polynomial regression models, (2) concentric-only versus eccentric–concentric bench press variants, as well as (3) the within-participants versus the between-participants variability of the velocity attained at each percentage of the 1-repetition maximum. The load–velocity relationship of 30 men (age: 21.2 [3.8] y; height: 1.78 [0.07] m, body mass: 72.3 [7.3] kg; bench press 1-repetition maximum: 78.8 [13.2] kg) were evaluated by means of linear and polynomial regression models in the concentric-only and eccentric–concentric bench press variants in a Smith machine. Two sessions were performed with each bench press variant. The main findings were: (1) first-order polynomials (coefficient of variation: 4.39%–4.70%) provided the load–velocity relationship with higher reliability than the second-order polynomials (coefficient of variation: 4.68%–5.04%); (2) the reliability of the load–velocity relationship did not differ between the concentric-only and eccentric–concentric bench press variants; and (3) the within-participants variability of the velocity attained at each percentage of the 1-repetition maximum was markedly lower than the between-participants variability. Taken together, these results highlight that, regardless of the bench press variant considered, the individual determination of the load–velocity relationship by a linear regression model could be recommended to monitor and prescribe the relative load in the Smith machine bench press exercise.


2021 ◽  
pp. 194173812097786
Author(s):  
Amador García-Ramos ◽  
Danica Janicijevic ◽  
Ivan Jukic

Background: One-repetition maximum (1RM) tests are time-consuming, and they might not always be logistically possible or warranted due to increased risk of injury when performed incorrectly or by novice athletes. Repetitions-to-failure tests are a widespread method of predicting the 1RM, but its accuracy may be compromised by several factors such as the type of exercise, sex, training history, and the number of repetitions completed in the test. Hypothesis: The touch-and-go bench press would provide a higher 1RM than the concentric-only bench press for both genders regardless of whether the 1RM was obtained by the direct or repetitions-to-failure method and the error in the 1RM prediction would be positively correlated with the number of repetitions performed to failure and negatively correlated with the 1RM strength and resistance training experience. Study Design: Cross-sectional study. Level of Evidence: Level 3. Methods: A total of 113 adults (87 men and 26 women) were tested on 2 sessions during the concentric-only and touch-and-go bench press. Each session consisted of an incremental loading test until reaching the 1RM load, followed by a repetitions-to-failure test. Results: The 1RM was higher for the touch-and-go bench press using both the direct (men, 7.80%; women, 7.62%) and repetitions-to-failure method (men, 8.29%; women, 7.49%). A significant, although small, correlation was observed between the error in the estimation of the 1RM and the number of repetitions performed ( r = 0.222; P < 0.01), 1RM strength ( r = −0.169; P = 0.01), and resistance training experience ( r = −0.136; P = 0.05). Conclusion: The repetitions-to-failure test is a valid method of predicting the 1RM during the concentric-only and touch-and-go bench press variants. However, the accuracy of the prediction could be compromised with weaker and less experienced individuals and if more than 10 repetitions are completed during the repetitions-to-failure test. Clinical Relevance: The repetitions-to-failure test does not require any sophisticated equipment and enables a widespread use in different training environments.


2020 ◽  
Vol 15 (7) ◽  
pp. 949-957
Author(s):  
Alejandro Pérez-Castilla ◽  
Daniel Jerez-Mayorga ◽  
Dario Martínez-García ◽  
Ángela Rodríguez-Perea ◽  
Luis J. Chirosa-Ríos ◽  
...  

Purpose: To compare the load–velocity (L-V) relationship between bench-press exercises performed using 4 different grip widths, to determine the association between the anthropometric characteristics and L-V profile, and to explore whether a multiple linear-regression model with movement velocity and subjects’ anthropometric characteristics as predictor variables could increase the goodness of fit of the individualized L-V relationship. Methods: The individual L-V relationship of 20 men was evaluated by means of an incremental loading test during the bench-press exercise performed on a Smith machine using narrow, medium, wide, and self-selected grip widths. Simple and multiple linear-regression models were performed. Results: The mean velocity associated with each relative load did not differ among the 4 grip widths (P ≥ .130). Only body height and total arm length were correlated with the mean velocity associated with light and medium loads (r ≥ .464). A slightly higher variance of the velocity attained at each relative load was explained when some anthropometric characteristics were used as predictor variables along with the movement velocity (r2 = .969 [.965–.973]) in comparison with the movement velocity alone (r2 = .966 [.955–.968]). However, the amount of variance explained by the individual L-V relationships was always higher than with the multiple linear-regression models (r2 = .995 [.985–1.000]). Conclusions: These results indicate that the individual determination of the L-V relationship using a self-selected grip width could be recommended to monitor relative loads in the Smith machine bench-press exercise.


Sign in / Sign up

Export Citation Format

Share Document