scholarly journals Physiological Determinants of Ultramarathon Trail-Running Performance

Author(s):  
Alexandra M. Coates ◽  
Jordan A. Berard ◽  
Trevor J. King ◽  
Jamie F. Burr

Context: The physiological determinants of ultramarathon success have rarely been assessed and likely differ in their contributions to performance as race distance increases. Purpose: To examine predictors of performance in athletes who completed either a 50-, 80-, or 160-km trail race over a 20-km loop course on the same day. Methods: Measures of running history, aerobic fitness, running economy, body mass loss, hematocrit alterations, age, and cardiovascular health were examined in relation to race-day performance. Performance was defined as the percentage difference from the winning time at a given race distance, with 0% representing the fastest possible time. Results: In the 50-km race, training volumes, cardiovascular health, aerobic fitness, and a greater loss of body mass during the race were all related to better performance (all P < .05). Using multiple linear regression, peak velocity achieved in the maximal oxygen uptake test (β = −11.7, P = .002) and baseline blood pressure (β = 3.1, P = .007) were the best performance predictors for the men’s 50-km race (r = .98, r2 = .96, P < .001), while peak velocity achieved in the maximal oxygen uptake test (β = −13.6, P = .001) and loss of body mass (β = 12.8, P = .03) were the best predictors for women (r = .94, r2 = .87, P = .001). In the 80-km race, only peak velocity achieved in the maximal oxygen uptake test predicted performance (β = −20.3, r = .88, r2 = .78, P < .001). In the 160-km race, there were no significant performance determinants. Conclusions: While classic determinants of running performance, including cardiovascular health and running fitness, predict 50-km trail-running success, performance in longer-distance races appears to be less influenced by such physiological parameters.

2020 ◽  
Author(s):  
Alexandra M Coates ◽  
Jordan Berard ◽  
Trevor James King ◽  
Jamie Burr

The physiological determinants of ultramarathon success have rarely been assessed, and likely differ in their contributions to performance as race distance increases. The aim of this study was to examine predictors of performance in athletes who completed either a 50km (n:23, F:11), 80km (n:14, F:4), or 160km (n:14, F:2) trail race over a 20km-loop course on the same day. Measures of training history, aerobic fitness, running economy, in-race dehydration, and cardiovascular health were examined in relation to race-day performance. Performance was defined as the percent difference from the winning time at a given race distance, with 0% representing the fastest possible time. In the 50km race, higher training volumes, cardiovascular health, aerobic fitness, and a greater loss of body mass during the race were all related to better performance (all P&lt;0.05). Using multiple linear regression, peak velocity achieved in the VO2max test (β=-11.7, P=0.002) and baseline blood pressure (β=3.1, P=0.007) were the best performance predictors for the men’s 50km race (r=0.98, r2=0.96, P&lt;0.001), while peak velocity achieved in the VO2max test (β=-13.6, P=0.001) and loss of body mass (β=12.8, P=0.03) were the best predictors for women (r=0.94, r2=0.87, P=0.001). In the 80km race, only peak velocity achieved in the VO2max test predicted performance (β =-20.3, r=0.88, r2=0.78, P&lt;0.001). In the 160km race, there were no significant performance determinants. While classic determinants of running performance including cardiovascular health, and running fitness predict 50km trail running success, performance in longer distance races appears to be less influenced by such physiological parameters.


2009 ◽  
Vol 107 (6) ◽  
pp. 1918-1922 ◽  
Author(s):  
Jared R. Fletcher ◽  
Shane P. Esau ◽  
Brian R. MacIntosh

The purpose of this study was to compare running economy across three submaximal speeds expressed as both oxygen cost (ml·kg−1·km−1) and the energy required to cover a given distance (kcal·kg−1·km−1) in a group of trained male distance runners. It was hypothesized that expressing running economy in terms of caloric unit cost would be more sensitive to changes in speed than oxygen cost by accounting for differences associated with substrate utilization. Sixteen highly trained male distance runners [maximal oxygen uptake (V̇o2max) 66.5 ± 5.6 ml·kg−1·min−1, body mass 67.9 ± 7.3 kg, height 177.6 ± 7.0 cm, age 24.6 ± 5.0 yr] ran on a motorized treadmill for 5 min with a gradient of 0% at speeds corresponding to 75%, 85%, and 95% of speed at lactate threshold with 5-min rest between stages. Oxygen uptake was measured via open-circuit calorimetry. Average oxygen cost was 221 ± 19, 217 ± 15, and 221 ± 13 ml·kg−1·km−1, respectively. Caloric unit cost was 1.05 ± 0.09, 1.07 ± 0.08, and 1.11 ± 0.07 kcal·kg−1·km−1 at the three trial speeds, respectively. There was no difference in oxygen cost with respect to speed ( P = 0.657); however, caloric unit cost significantly increased with speed ( P < 0.001). It was concluded that expression of running economy in terms of caloric unit cost is more sensitive to changes in speed and is a more valuable expression of running economy than oxygen uptake, even when normalized per distance traveled.


2012 ◽  
Vol 37 (4) ◽  
pp. 736-743 ◽  
Author(s):  
Camila Coelho Greco ◽  
Renato Aparecido Corrêa Caritá ◽  
Jeanne Dekerle ◽  
Benedito Sérgio Denadai

This study aimed at assessing the sensitivity of both maximal lactate steady state (MLSS) and critical power (CP) in populations of different aerobic training status to ascertain whether CP is as sensitive as MLSS to a change in aerobic fitness. Seven untrained subjects (UT) (maximal oxygen uptake = 37.4 ± 6.5 mL·kg–1·min–1) and 7 endurance cyclists (T) (maximal oxygen uptake = 62.4 ± 5.2 mL·kg–1·min–1) performed an incremental test for maximal oxygen uptake estimation and several constant work rate tests for MLSS and CP determination. MLSS, whether expressed in mL·kg–1·min–1 (T: 51.8 ± 5.7 vs. UT: 29.0 ± 6.1) or % maximal oxygen uptake (T: 83.1 ± 6.8 vs. UT: 77.1 ± 4.5), was significantly higher in the T group. CP expressed in mL·kg–1·min–1 (T: 56.8 ± 5.1 vs. UT: 33.1 ± 6.3) was significantly higher in the T group as well but no difference was found when expressed in % maximal oxygen uptake (T: 91.1 ± 4.8 vs. UT: 88.3 ± 3.6). Whether expressed in absolute or relative values, MLSS is sensitive to aerobic training status and a good measure of aerobic endurance. Conversely, the improvement in CP with years of training is proportional to those of maximal oxygen uptake. Thus, CP might be less sensitive than MLSS for depicting an enhancement in aerobic fitness.


2016 ◽  
Vol 41 (5) ◽  
pp. 498-503 ◽  
Author(s):  
Fabio Milioni ◽  
Elvis de Souza Malta ◽  
Leandro George Spinola do Amaral Rocha ◽  
Camila Angélica Asahi Mesquita ◽  
Ellen Cristini de Freitas ◽  
...  

The aim of the present study was to investigate the effects of acute administration of taurine overload on time to exhaustion (TTE) of high-intensity running performance and alternative maximal accumulated oxygen deficit (MAODALT). The study design was a randomized, placebo-controlled, crossover design. Seventeen healthy male volunteers (age: 25 ± 6 years; maximal oxygen uptake: 50.5 ± 7.6 mL·kg−1·min−1) performed an incremental treadmill-running test until voluntary exhaustion to determine maximal oxygen uptake and exercise intensity at maximal oxygen uptake. Subsequently, participants completed randomly 2 bouts of supramaximal treadmill-running at 110% exercise intensity at maximal oxygen uptake until exhaustion (placebo (6 g dextrose) or taurine (6 g) supplementation), separated by 1 week. MAODALT was determined using a single supramaximal effort by summating the contribution of the phosphagen and glycolytic pathways. When comparing the results of the supramaximal trials (i.e., placebo and taurine conditions) no differences were observed for high-intensity running TTE (237.70 ± 66.00 and 277.30 ± 40.64 s; p = 0.44) and MAODALT (55.77 ± 8.22 and 55.06 ± 7.89 mL·kg−1; p = 0.61), which seem to indicate trivial and unclear differences using the magnitude-based inferences approach, respectively. In conclusion, acute 6 g taurine supplementation before exercise did not substantially improve high-intensity running performance and showed an unclear effect on MAODALT.


2018 ◽  
Vol 200 ◽  
pp. 155-159 ◽  
Author(s):  
Majid Jalili ◽  
Farzad Nazem ◽  
Akbar Sazvar ◽  
Kamal Ranjbar

Author(s):  
Simon J. de Waal ◽  
Josu Gomez-Ezeiza ◽  
Rachel E. Venter ◽  
Robert P. Lamberts

Purpose: To provide a systematic overview of physiological parameters used to determine the training status of a trail runner and how well these parameters correlate with real-world trail running performance. Method: An electronic literature search of the PubMed and Scopus digital databases was performed. Combinations of the terms “trail run” or “trail runner” or “trail running” and “performance” were used as search terms. Seven studies met the inclusion criteria. Results: Trail running performance most commonly correlated (mean [SD]) with maximal aerobic capacity (71%; r = −.50 [.32]), lactate threshold (57%; r = −.48 [.28]), velocity at maximal aerobic capacity (43%; r = −.68 [.08]), running economy (43%; r = −.31 [.22]), body fat percentage (43%; r = .55 [.21]), and age (43%; r = .52 [.14]). Regression analyses in 2 studies were based on a single variable predicting 48% to 60% of performance variation, whereas 5 studies included multiple variable regression analyses predicting 48% to 99% of performance variation. Conclusions: Trail running performance is multifaceted. The classic endurance model shows a weaker association with performance in trail running than in road running. Certain variables associated with trail running research (such as testing procedures, race profiles, and study participants) hinder the execution of comparative studies. Future research should employ trail-specific testing protocols and clear, objective descriptions of both the race profile and participants’ training status.


Sports ◽  
2020 ◽  
Vol 8 (6) ◽  
pp. 75
Author(s):  
Per-Øyvind Torvik ◽  
Roland van den Tillaar ◽  
Gaute Iversen

The aim of this study was to investigate if the order of submaximal lactate threshold and maximal oxygen uptake testing would influence test outcomes. Twelve well-trained male cross-country skiers (mean age 19.6 years) performed two test sessions within a week in a within-subjects repeated measures with cross-over design study. A maximal oxygen uptake test (VO2max) followed by a lactate threshold (LT) test and vice versa, were performed. The test data included VO2, blood lactate (La-b), heart rate (HR), performance speed, Borg scale (RPE) at all stages and lactate accumulation throughout the whole test protocol including the breaks. No significant effect of testing order was found for: VO2max (74.23 vs. 73.91 mL∙min−1∙kg−1), maximal HR (190.7 vs. 189.9 bpm) and speed at LT during uphill running. Three out of four common definitions of LT resulted in the same La-b at the last two steps, 11 and 12 km/h respectively, in the two protocols. It is worth noting that VO2, HR and La-b were higher in the first two stages of the LT test when VO2max was tested first in the protocol. Well-trained cross-country skiers conclusively attained a similar VO2max and LT in both protocols, and the two tests did not seem to influence each other in terms of the degree of exhaustion that occurs in a single VO2max or an incremental LT test. However, when using a curvilinear function to define the LT, it is important to know that the VO2max test can influence levels of VO2, HR and La-b at the first two stages of the LT test.


1969 ◽  
Vol 1 (4) ◽  
pp. 207???211 ◽  
Author(s):  
R. J. FERGUSON ◽  
G. G. MARCOTTE ◽  
R. R. MONTPETIT

Sign in / Sign up

Export Citation Format

Share Document