Wingate Anaerobic Test Reference Values for Male Power Athletes

2012 ◽  
Vol 7 (3) ◽  
pp. 232-236 ◽  
Author(s):  
Erin Coppin ◽  
Edward M. Heath ◽  
Eadric Bressel ◽  
Dale R. Wagner

Purpose:The aim of this study was to develop reference values for the Wingate Anaerobic Test (WAnT) for peak power (PP), mean power (MP), and fatigue index (FI) in NCAA Division IA male athletes.Methods:Seventy-seven athletes (age 20.8 ± 1.8 y, mass 84.4 ± 9.4 kg, height 183.9 ± 6.2 cm) participating in American football (n = 52) and track and field (n = 25) performed a 30-s WAnT resisted at 0.085 kp/kg body mass (BM).Results:Absolute mean (± SD) values for PP and MP were 1084.2 ± 137.0 and 777.1 ± 80.9 W, respectively, whereas values normalized to BM were 12.9 ± 1.5 and 9.3 ± 0.9 W/kg BM, respectively. Mean FI values were 49.1% ± 8.4%. PP outputs >13.6, 12.4–13.6, and <12.4 W/kg BM were classified as high, medium, and low, respectively. MP outputs >9.8, 9.0–9.8, and <9.0 W/kg BM were classified as high, medium, and low, respectively.Conclusions:The reference values developed in this study can be used in various athletic training and research programs to more accurately assess athletes’ anaerobic fitness and to monitor changes resulting from anaerobic training.

2007 ◽  
Vol 17 (2) ◽  
pp. 140-151 ◽  
Author(s):  
Andrea D. Marjerrison ◽  
Jonah D. Lee ◽  
Anthony D. Mahon

This study examined the effect of pre exercise carbohydrate (CHO) feeding on performance on a Wingate anaerobic test (WAnT) in 11 boys (10.2 ± 1.3 y old). Four WAnTs with 2 min recovery were performed 30 min after consuming a CHO (1 g CHO/kg) or placebo drink. Peak power (PP) and mean power (MP) were similar between trials. PP ranged from 241.1 ± 82.2 to 223.1 ± 57.9 W with carbohydrate and from 238.2 ± 76.1 to 223.4 ± 52.3 W with placebo. MP ranged from 176.3 ± 58.4 to 151.1 ± 37.5 W with carbohydrate versus 178.0 ± 45.8 to 159.1 ± 32.7 W with placebo. Pre exercise glucose was significantly higher in CHO versus placebo (7.0 ± 1.0 vs. 5.5 ± 0.5 mmol/L), but post exercise values were not different. Blood lactate was similar between trials but increased over time. This study found that the ingestion of a CHO solution before exercise did not influence power output during repeated performances of the WAnT.


Author(s):  
João Gabriel Silveira-Rodrigues ◽  
André Maia-Lima ◽  
Pedro Augusto Santos Almeida ◽  
Bárbara Marielle Silva França ◽  
Bruno Teobaldo Campos ◽  
...  

Author(s):  
Sebastian Kaufmann ◽  
Olaf Hoos ◽  
Aaron Beck ◽  
Fabian Fueller ◽  
Richard Latzel ◽  
...  

Purpose: To evaluate the metabolic relevance of type of locomotion in anaerobic testing by analyzing and comparing the metabolic profile of the Bosco Continuous Jumping Test (CJ30) with the corresponding profile of the Wingate Anaerobic Test (WAnT). Methods: A total of 11 well-trained, male team-sport athletes (age = 23.7 [2.2] y, height = 184.1 [2.8] cm, weight = 82.4 [6.4] kg) completed a CJ30 and WAnT each. During the WAnT, power data and revolutions per minute were recorded, and during the CJ30, jump height and jumping frequency were recorded. In addition, oxygen uptake and blood lactate concentration were assessed, and metabolic profiles were determined via the PCr-LA-O2 method. Results: In the CJ30, metabolic energy was lower (109.3 [18.0] vs 143.0 [13.1] kJ, P < .001, d = −2.302), while peak power (24.8 [4.4] vs 11.8 [0.5] W·kg−1, P < .001, d = 3.59) and mean power (20.8 [3.6] vs 9.1 [0.5] W·kg−1, P < .001, d = 4.14) were higher than in the WAnT. The metabolic profiles of the CJ30 (aerobic energy = 20.00% [4.7%], anaerobic alactic energy [WPCr] = 45.6% [4.5%], anaerobic lactic energy = 34.4% [5.2%]) and the WAnT (aerobic energy = 16.0% [3.0%], anaerobic alactic WPCr = 34.5% [5.0%], anaerobic lactic energy = 49.5% [3.3%]) are highly anaerobic. Absolute energy contribution for the CJ30 and WAnT was equal in WPCr (49.9 [11.1] vs 50.2 [11.2] kJ), but anaerobic lactic energy (37.7 [7.7] vs 69.9 [5.3] kJ) and aerobic energy (20.6 [5.7] vs 23.0 [4.0] kJ) were higher in the WAnT. Mechanical efficiency was substantially higher in the CJ30 (37.9% [4.5%] vs 15.6% [1.0%], P < .001, d = 6.86), while the fatigue index was lower (18.5% [3.8%] vs 23.2% [3.1%], P < .001, d = −1.38) than in the WAnT. Conclusions: Although the anaerobic share in both tests is similar and predominant, the CJ30 primarily taxes the WPCr system, while the WAnT more strongly relies on the glycolytic pathway. Thus, the 2 tests should not be used interchangeably, and the type of locomotion seems crucial when choosing an anaerobic test for a specific sport.


1993 ◽  
Vol 5 (1) ◽  
pp. 72-77
Author(s):  
Sharon A. Evans ◽  
Joan M. Eckerson ◽  
Terry J. Housh ◽  
Glen O. Johnson

This investigation examined age related differences in the muscular power of the arms in high school wrestlers. Seventy-five volunteers (M age ±SD = 16.3 ±1.2 yrs) were stratified into four age groups (≤15.00; 15.01−16.00; 16.01−17.00, and ≥17.01 yrs) corresponding approximately to the freshman through senior years of high school. Mean power (MP) and peak power (PP) were measured using an arm crank Wingate Anaerobic Test, and body composition was assessed via underwater weighing. The results indicated significant (p<0.05) group differences for absolute MP and PP as well as for relative MP and PP (covaried for body weight). No significant differences were found when MP and PP were adjusted for fat-free weight (FFW). The results suggested that the age related increases in muscular power of the arms were a function of increases in FFW across age.


1997 ◽  
Vol 9 (1) ◽  
pp. 80-89 ◽  
Author(s):  
Michael Chia ◽  
Neil Armstrong ◽  
David Childs

Twenty-five girls and 25 boys (mean age 9.7 ± 0.3 years) each completed a 20- and 30-s Wingate Anaerobic Test (WAnT). Oxygen uptake during the WAnTs, and postexercise blood lactate samples were obtained. Inertia and load-adjusted power variables were higher (18.6–20.1% for peak, and 6.7–7.5% for mean power outputs, p < .05) than the unadjusted values for both the 20- and 30-s WAnTs. The adjusted peak power values were higher (7.7–11.6%, p < .05) in both WAnTs when integrated over 1-s than over 5-s time periods. The aerobic contributions to the tests were lower (p < .05) in the 20-s WAnT (13.7–35.7%) than in the 30-s WAnT (17.7–44.3%) for assumed mechanical efficiencies of 13% and 30%. Postexercise blood lactate concentration after the WAnTs peaked by 2 min. No gender differences (p > .05) in anaerobic performances or peak blood lactate values were detected.


2009 ◽  
Vol 62 (5-6) ◽  
pp. 207-211 ◽  
Author(s):  
Jelena Popadic-Gacesa ◽  
Dea Karaba-Jakovljevic ◽  
Otto Barak ◽  
Miodrag Drapsin

INTRODUCTION Wingate anaerobic test is an all-out test, which gives information about maximal anaerobic power. The aim of the study was to show characteristics of standard and modified versions of Wingate anaerobic test (WAnT), and to determine and explain the differences in observed parameters due to the measurement protocol applied. MATHERIAL AND METHODS The testing was conducted on 30 male non sportsmen, who performed usual everyday activities. The following parameters were measured: peak power or anaerobic power, mean power as a mean value of power during the whole test and explosive power or acceleration. Modified versions were performed with 5 s or 10 s delay of maximal cycling activity, during which the person was slowly pedaling. RESULTS The average values of parameters Peak power and Explosive power in our participants were 622.20?134.57 W and 89.26 ?28.57 W/s, respectively. In modification 1 Peak Power and Explosive Power were 680.25?133.43 W and 100.60?12.77 W/s, and in modification 2 they were 685.95?135.68 W and 100.30?10.09 W/s. Significant differences were found in both parameters between the standard and modified versions, but there was no significant difference between two modified versions. The mean power parameter was not considered in the discussion, because of the fact that modified versions were shortened, and it was not a valid measurement for this parameter. DISCUSION AND CONCLUSION The difference between standard and modified versions can be explained by the difference between test and retest probes, and also because of modification of protocol which can partially influence the results of testing.


2010 ◽  
Vol 67 (3) ◽  
pp. 220-224 ◽  
Author(s):  
Aleksandar Klasnja ◽  
Miodrag Drapsin ◽  
Damir Lukac ◽  
Patrik Drid ◽  
Slavko Obadov ◽  
...  

Background/Aim. The Wingate anaerobic test is a valid and reliable method of measuring anaerobic capacity. The aim of this study was to determine whether other modified test can be used instead of the Wingate test. Methods. A group of 30 sedentary young men were first tested with a cycle ergometer (classic Wingate test), and then with a dynamometer during 30 s of 'all out' leg extension exercise (modified Wingate test; WAnTe) in order to test anaerobic capacity. Subsequent correlations between these tests were made. Results. Peak power, mean power on cycling ergometer in absolute and relative values were 463 ? 105 W, 316.7 ? 63.8 W, 5.68 ? 1.17 W/kg, 3.68 ? 0.78 W/kg, respectively. On a dynamometer absolute and relative values of maximal and mean load in kg and power in Watts were 136.54 ? 21.3 kg, 1.67 ? 0.26; 128.65 ? 19.93 kg, 1.57 ? 0.24 kg, 657 ? 125.87 W, and 8 ? 1.54 W/kg, respectively. There was no correlation between 5 s intervals of the classic Wingate test and WAnTe during the first, fourth and fifth intervals, but in the second (r = 0.49, p < 0.05), third (r = 0.38, p < 0.05) and last 5 s intervals (r = 0.39, p < 0.05), and also in peak power and mean power (r = 0.42, p < 0.05 and r = 0.45, p < 0.05 respectively), a significant positive correlation was detected. Conclusion. A modified Wingate test of leg extension on a dynamometer in sedentary young men shows a correlation with the classic Wingate test only in parameters of peak power, and mean power and the second, the third and the last 5 s intervals. Because of that it should only be used for orientation, whereas for precise measurements of anaerobic capacity the classic Wingate test should be used.


Sports ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 162
Author(s):  
Raci Karayigit ◽  
Alireza Naderi ◽  
Bryan Saunders ◽  
Scott C. Forbes ◽  
Juan Del Coso ◽  
...  

Previous studies have investigated caffeine (CAF) and taurine (TAU) in isolation and combined during exercise in males. However, the potential synergistic effect during high-intensity exercise remains unknown in female athletes. Seventeen female team-sport athletes participated (age: 23.4 ± 2.1 years; height: 1.68 ± 0.05 m; body mass: 59.5 ± 2.2 kg). All participants were habitual caffeine consumers (340.1 ± 28.6 mg/day). A double-blind randomized crossover design was used. Participants completed four experimental trials: (i) CAF and TAU (6 mg/kg body mass of CAF + 1 g of TAU), (ii) CAF alone; (iii) TAU alone; and (iv) placebo (PLA). Supplements were ingested 60 min before a 30-s Wingate Anaerobic Test (WAnT). Heart rate and blood lactate (BL) were measured before and immediately after the WAnT; and ratings of perceived exertion (RPE) were recorded immediately after the WAnT. Peak power (PP) was significantly higher following co-ingestion of CAF+TAU compared to PLA (p = 0.03) and TAU (p = 0.03). Mean power (MP) was significantly higher following co-ingestion of CAF+TAU compared to PLA (p = 0.01). No other differences were found between conditions for PP and MP (p > 0.05). There were also no observed differences in fatigue index (FI), BL; heart rate; and RPE between conditions (p > 0.05). In conclusion, compared to PLA the combined ingestion of 6 mg/kg of CAF and 1 g of TAU improved both PP and MP in female athletes habituated to caffeine; however; CAF and TAU independently failed to augment WAnT performance.


1998 ◽  
Vol 10 (4) ◽  
pp. 327-336 ◽  
Author(s):  
Eric Small ◽  
Oded Bar-Or ◽  
Edgar Van Mil ◽  
Saroj Saigal

This study compared the anaerobic performance and the muscle strength between extremely low birthweight (> 1,000 g = ELBW) 11- to 17-year-old adolescents and normal birthweight (< 2,500 g = NEW) controls. Seventeen ELBW (9 females and 8 males) and 17 NEW (9 females and 8 males) subjects took part. ELBW had lower anaerobic performance, as manifested in mean (p = .03) and peak (p < .001) mechanical power per kg body mass (Wingate Anaerobic Test). In absolute units mean power and peak power tended (p = .06 and .08, respectively) to be lower in the ELBW group, but there were no inter-group differences in the isokinetic strength of knee extensors or flexors (Kin Com dynamometer). ANOVA revealed no interaction between the effects of low birthweight and gender. We propose that dynamic, but not static, muscle performance in ELBW is still somewhat inferior in adolescence. This may reflect deficient neuromuscular control.


Sign in / Sign up

Export Citation Format

Share Document