Effect of Single-Leg Squat Speed and Depth on Dynamic Postural Control Under Single-Task and Dual-Task Paradigms

2019 ◽  
Vol 35 (4) ◽  
pp. 272-279
Author(s):  
Maria K. Talarico ◽  
Robert C. Lynall ◽  
Timothy C. Mauntel ◽  
Erin B. Wasserman ◽  
Darin A. Padua ◽  
...  

Although single-leg squats are a common dynamic balance clinical assessment, little is known about the relationship between parameters that influence squat movement and postural control performance. The objective of this study was to determine the relationships between squat parameters (speed and depth) and postural control under single task and dual task. A total of 30 healthy college students performed single-leg squats under single task and dual task with Stroop. Random-intercepts generalized linear mixed models determined the effect of squat parameters on center of pressure (CoP) parameters. For each 1-cm·s−1 increase in squat speed, sway range (mediolateral: β = −0.03; anteroposterior: β = −0.05) and area (β = −0.25) decreased, whereas sway speed (mediolateral: β = 0.05; anteroposterior: β = 0.29; total: β = 0.29) increased. For each 1-cm increase in squat depth, sway range (mediolateral: β = 0.05; anteroposterior: β = 0.20) and area (β = 0.72) increased, whereas sway speed (anteroposterior: β = −0.14; total: β = −0.14) decreased. Compared with single task, the association between total and anteroposterior sway speed and squat speed was stronger under dual task. Clinicians and researchers should consider monitoring squat speed and depth when assessing dynamic balance during single-leg squats, as these parameters influence postural control, especially under dual task.

Author(s):  
Zahra Nadimi ◽  
Mansoureh Adel Ghahraman ◽  
Ghassem Mohammadkhani ◽  
Reza Hoseinabadi ◽  
Shohreh Jalaie ◽  
...  

Background and Aim: Vestibular system has several anatomical connections with cognitive regions of the brain. Vestibular disorders have negative effects on cognitive performance. Hearing-impaired patients, particularly cochlear implant users, have concomitant vestibular disor­ders. Previous studies have shown that attention assigned to postural control decreases while per­forming a cognitive task (dual task) in hearing-impaired children. Since the vestibular system and postural control performance develop around 15−16 years of age, the aim of this study was to compare postural control performance during dual task in adolescent boys with normal hearing and cochlear implant (CI) users with congenital hearing-impairment. Methods: Postural control was assessed in twenty 16−19 year old cochlear implant boys and 40 normal hearing peers with force plate. The main outcomes were displacement in posterior- anterior and medial-lateral planes, and mean speed with and without cognitive task and under on/off-device conditions. Caloric test was per­formed for CI users in order to examine the peri­pheral vestibular system. Results: Ninety-five percent of CI users showed caloric weakness. There were no significant diff­erences in postural control parameters between groups. All performances deteriorated in the foam pad condition compared to the hard surface in all groups. Total mean velocity significantly increased during dual task in normal hearing group and in CI users with off-device. Conclusion: Although CI users had apparent vestibular disorders, their postural control in both single and dual-task conditions was identical to the normal peers. These effects can be attributed to the vestibular compensation that takes place during growing. Keywords: Balance; postural control; dual task; congenital hearing loss; cochlear implant


2020 ◽  
Vol 10 (6) ◽  
pp. 1979 ◽  
Author(s):  
Qipeng Song ◽  
Wei Sun ◽  
Cui Zhang ◽  
Min Mao ◽  
Li Li

Falls during stair negotiation have become one of the leading causes of accidental death. The effects of a concurrent cognitive or manual dual-task paradigm on dynamic gait stability remain uncertain. How much dynamic gait stability is influenced by gait velocity is also not clear. A total of 16 healthy young females descended a staircase under three different walking conditions: descend stairs only (single task), descend stairs while performing subtraction (cognitive dual-task), and descend stairs while carrying a glass of water (manual dual-task). An eight-camera Vicon motion analysis system and a Kistler force plate embedded into the third step of the staircase were used synchronously to collect kinematic and kinetic data. Gait velocity decreased and dynamic gait stability increased with both cognitive and manual dual-task conditions. The center of mass–center of pressure inclination angle increased with gait velocity but decreased with the manual dual-task condition compared to the single-task condition. Changes in gait velocity caused by the dual-task paradigm can partially explain the effects of dual-task dynamic gait stability. The influence of gait velocity should be considered in the assessment of dual-task effects.


Diversity ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 161
Author(s):  
Raoul Manenti ◽  
Enrico Lunghi ◽  
Benedetta Barzaghi ◽  
Andrea Melotto ◽  
Mattia Falaschi ◽  
...  

Several species of surface salamanders exploit underground environments; in Europe, one of the most common is the fire salamander (Salamandra salamandra). In this study, we investigated if fire salamander larvae occurring in groundwater habitats can affect the abundance of some cave-adapted species. We analyzed the data of abundance of three target taxa (genera Niphargus (Amphipoda; Niphargidae), Monolistra (Isopoda; Sphaeromatidae) and Dendrocoelum (Tricladida; Dedrocoelidae)) collected in 386 surveys performed on 117 sites (pools and distinct subterranean stream sectors), within 17 natural and 24 artificial subterranean habitats, between 2012 and 2019. Generalized linear mixed models were used to assess the relationship between target taxa abundance, fire salamander larvae occurrence, and environmental features. The presence of salamander larvae negatively affected the abundance of all the target taxa. Monolistra abundance was positively related with the distance from the cave entrance of the sites and by their surface. Our study revealed that surface salamanders may have a negative effect on the abundance of cave-adapted animals, and highlited the importance of further investigations on the diet and on the top-down effects of salamanders on the subterranean communities.


2020 ◽  
Vol 8 (4_suppl3) ◽  
pp. 2325967120S0015
Author(s):  
Tracy Zaslow ◽  
Camille Burton ◽  
Nicole M. Mueske ◽  
Adriana Conrad-Forrest ◽  
Bianca Edison ◽  
...  

Background: Previous research has identified deficient dual-task balance control at the time of return to play (RTP) and possible worsening after RTP in older adolescents/young adults with concussion. These findings have not been investigated in younger patients with concussion. Hypothesis/Purpose: We hypothesized that concussed adolescents would have slower walking speed and increased medial-lateral (ML) center of mass (COM) movement, which would normalize by the time of RTP but worsen after resuming activity. Methods: 13 adolescent concussion patients (7 male; age 10-17 years) were prospectively evaluated at their initial visit (IV) (mean 18, range 4-43 days post-concussion), at RTP clearance (mean 46, range 12-173 days post-concussion), and one month later (mean 26, range 20-41 days post-RTP) along with 11 controls (3 male) seen for similarly timed visits. Standing balance was assessed using range and root mean squared (RMS) COM motion in the anterior-posterior (AP) and ML directions during standing on both legs with eyes open while performing quiet standing, dual-task audio Stroop, side-to-side head turns, and side-to-side thumb tracking tasks. Dynamic balance was assessed using walking speed and COM ML range and velocity during walking alone and with side-to-side head turns and verbal fluency (reciting words starting with “F”) dual tasks. Patients were compared against controls using t-tests, and changes over time were evaluated using linear mixed-effects regression. Results: During standing, patients had higher COM ML RMS than controls at IV during head turns and higher COM AP range during thumb tracking. COM ML motion decreased from IV to RTP (head turns range -6.5mm, p=0.058; head turns RMS -16.8mm, p=0.002; thumb range 9.2mm, p=0.012) and increased from RTP to 1 month follow-up (head turns RMS +10.0mm, p=0.040; Stroop RMS +8.4mm, p=0.086). Patients walked slower than controls at IV during all tasks, and COM ML range was higher in patients vs. controls during verbal fluency at IV and RTP. Walking speed increased from IV to RTP during verbal fluency (+7.8cm/s, p=0.044), from RTP to post-RTP in single task walking (+6.1cm/s, p=0.041), and at each successive visit during head turns (+6.0cm/s and +6.5cm/s, p<0.07). COM ML range also decreased in patients from IV to RTP with verbal fluency (-14.7mm, p=0.011) and from RTP to post-RTP in single task walking ( 4.0mm, p=0.061). Conclusion: Adolescent concussion patients had deficits in static and dynamic balance control at initial presentation. This tended to improve by RTP and only worsened post-RTP for dual-task ML control during standing, suggesting that current conservative treatment protocols are appropriate.


Neurology ◽  
2021 ◽  
Vol 98 (1 Supplement 1) ◽  
pp. S3.2-S3
Author(s):  
Nathan Morelli ◽  
Nathan Johnson ◽  
Kimberly Kaiser ◽  
Richard Andreatta ◽  
Nicholas Heebner ◽  
...  

ObjectiveThe purpose of this study is to determine the relationship between intra- and internetwork connectivity and DTC of postural, gait, and cognitive performance in healthy, young adults.BackgroundDual-task (DT) deficits persist after return to activity in those recovering from a sports related concussion. However, little is known about the relationship of cortical network function to DT capacity. Current evidence regarding the relationship between network connectivity and dual-task balance and gait performance is limited by focusing on older adults and those with cognitive impairments, using a condensed set of task demands, and neglecting the role of connectivity in the ability to adapt to minimize DT cost (DTC).Design/MethodsTwelve adults (7 females; age: 23.41 ± 2.74 years; height: 1.73 ± 0.10 m; weight: 72.66 ± 11.25 kg) volunteered for this study. Participants completed resting-state functional magnetic resonance imaging, as well as single and DT variants of the Concussion Balance Test, Sensory Organization Test, and gait. Functional connectivity within and between the default mode (DMN), salience (SAL), and sensorimotor (SMN) networks were calculated for all subjects. Pearson's correlations were used to assess the association of connectivity to balance and gait speed DTC.ResultsInter-network connectivity between to DMN to the SAL and SMN demonstrated moderate to strong association to DTC of gait speed and postural control during tasks which perturbed sensory environments (r = −0.59 to 0.94, p < 0.05). There was no relationship between connectivity and DTC of cognitive performance during DT (r = −0.50 to 0.54, p > 0.05).ConclusionsOur findings highlight the role of the SAL, SMN, and DMN in cognitive-motor interactions during gait and postural control. Furthermore, functional connectivity underlying DT gait and static postural control performance express inverse relationships, suggesting task-dependent differences in system level processing.


2018 ◽  
Vol 48 (6) ◽  
pp. 729-734 ◽  
Author(s):  
Juha Lappi ◽  
Jaana Luoranen

An approximate method is derived for testing the differences of LT50, LD50, or ED50, which indicate the temperature or dose needed to kill or damage half of the plants, respectively. It is assumed that a logistic model is used to describe the relationship between probability and a treatment variable in the framework of generalized linear mixed models or generalized linear models. The method is based on the delta method and the Wald test. In the forest sciences, this method can be used when dose, temperature, or time responses are compared in different treatments, cultivars, or origins.


2019 ◽  
Vol 40 (6) ◽  
pp. 702-709 ◽  
Author(s):  
Mohammad Hadadi ◽  
Faezeh Abbasi

Background: Chronic ankle instability (CAI) is associated with postural control impairment. Orthotic devices are routinely used to improve postural control of CAI patients and prevent recurrence of ankle sprain. This study aimed to evaluate and compare the effect of combined mechanism ankle support (CMAS) with soft ankle support (SAS) and custom-molded foot orthosis (CFO) on static and dynamic postural control in patients with CAI. Methods: Twenty-two patients with CAI and 22 matched healthy subjects were recruited. The participants were evaluated in four orthotic conditions (without orthosis and with the CMAS, SAS, and CFO). Static balance was investigated in single-limb stance on the force platform, and dynamic balance was assessed using the Star Excursion Balance Test (SEBT). Results: Statistically significant differences were found for the main effects of the groups in all center of pressure (COP) parameters and reach distances in medial (M), anteromedial (AM), and posteromedial (PM) directions of the SEBT ( P < .05). The main effect of the orthotics for all evaluated parameters, except reach distance in the PM direction, was statistically different. All COP parameters were significantly lower with the CMAS compared with other orthotic conditions in CAI patients. Also, the higher reach distances with the CMAS were obtained in the AM and M directions of the SEBT. Conclusion: The CMAS improved impaired postural control in static and dynamic stability tests, but no similar effect was found for SAS and CFO. This result may have implications for the best bracing for CAI. Level of Evidence: Level II, comparative study.


2019 ◽  
Vol 9 (10) ◽  
pp. 261 ◽  
Author(s):  
Hélène Viruega ◽  
Inès Gaillard ◽  
John Carr ◽  
Bill Greenwood ◽  
Manuel Gaviria

There is still a lack of studies focused on trunk neurorehabilitation. Accordingly, it is unclear which therapeutic modalities are the most effective in improving static/dynamic balance after brain damage. We designed a pilot study on hippotherapy to assess its short- and mid-term effect on dynamic postural balance in patients with moderate-to-severe sensorimotor impairment secondary to cerebral palsy. Five patients aged 15.4 ± 6.1 years old were recruited. All of them had moderate-to-severe alterations of the muscle tone with associated postural balance impairment. Standing and walking were also impaired. Ten minutes horse riding simulator followed by twenty minutes hippotherapy session were conducted during five session days separated by one week each. We analyzed the displacement of the Center of Pressure (COP) on the sitting surface of the simulator’s saddle by means of a customized pressure pad. We measured the general behavior of the COP displacement as well as the postural adjustments when pace changed from walk to trot to walk during the sessions and among sessions. Statistical analysis revealed an improved postural control both by the end of the session and from session 1 to session 5. These results suggest that hippotherapy might support regularization of postural control in a long-term neurorehabilitation context.


Author(s):  
Hyun Gu Kang ◽  
Madalena Costa ◽  
Attila A. Priplata ◽  
Olga V. Starobinets ◽  
Ary L. Goldberger ◽  
...  

Balance control during standing is attributable to the complex, nonlinear interactions of multiple postural control systems, manifested as the highly irregular displacements in center of pressure (COP) during standing. Aging and associated frailty may result in the degradation of these complex interactions and manifest as a loss of complexity in COP dynamics. Furthermore, frail individuals may not be able to adapt to a superimposed stress that challenges balance, leading to falls. To test these hypotheses, data were analyzed from the MOBILIZE Boston Study, an ongoing population-based study of community-dwelling older adults. Each participant’s frailty phenotype (not frail, pre-frail, frail) was determined using the Fried et al. 2001 definition. 551 participants (age 77.9±5.5) stood on a balance platform, with or without concurrently performing serial subtractions. Complexity of balance dynamics over multiple time scales was quantified using multiscale entropy (MSE), a more sensitive measure of physiologic health than variance. Of the participants, 39% were pre-frail and 6% were frail. Baseline MSE was lower with each successive frailty condition (p&lt;0.002). When performing the cognitive task, MSE was lowered similarly in all groups (p&lt;0.001). Frailty was associated with a loss of complexity in the dynamics of postural sway, which may be due to the degradation of integrated postural control networks that enable upright stance. Performance of a dual-task further reduced this complexity. Cognitive distractions during standing may further compromise balance control in frail individuals, which may explain their increased fall risk.


2015 ◽  
Vol 7 (4) ◽  
pp. 73-84
Author(s):  
PIA M. VINKEN ◽  
THOMAS HEINEN

Background: The study explored whether three different applications of an elastic tape on the forearms of healthy, active gymnasts influence their postural control performance during a handstand immediately and 48 hours after application. Material/Methods: 24 gymnasts were randomly assigned to three groups: group 1 – elastic tape application at a gymnast’s wrist joints, group 2 – elastic tape application at a gymnast’s forearm muscles, and group 3 – a combination of groups 1 and 2. The gymnast’s center of pressure was measured with a mobile balance platform, indicating postural control performance during a handstand. Results: The gymnast’s postural control performance during a handstand is affected depending on the elastic tape application and the time span the application is in situ. Elastic tape application on a gymnast’s wrist joints reveals a performance increase immediately and 48 hours after application. Elastic tape application on a gymnast’s forearm muscles increases performance when applied for 48 hours. Combined elastic tape application does not additionally affect gymnast’s postural control performance. Conclusions: Elastic tape applications can increase postural control performance during a handstand. Furthermore, it is supposed that mechano-sensory stimulation, improved attention and awareness due to elastic tape application and the belief in its effectiveness may be moderating mechanisms of this effect.


Sign in / Sign up

Export Citation Format

Share Document