Characterization of a System for Studying Human Gait during Slope Walking

2005 ◽  
Vol 21 (2) ◽  
pp. 153-166 ◽  
Author(s):  
Andrea N. Lay ◽  
Chris J. Hass ◽  
D. Webb Smith ◽  
Robert J. Gregor

Sloped walking surfaces provide a unique environment for examining the bio-mechanics and neural control of locomotion. While sloped surfaces have been used in a variety of studies in recent years, the current literature provides little if any discussion of the integrity, i.e., validity, of the systems used to collect data. The goal of this study was to develop and characterize a testing system capable of evaluating the kinetics of human locomotion on sloped surfaces. A ramped walkway system with an embedded force plate was constructed and stabilized. Center of pressure and reaction force data from the force plate were evaluated at 6 ramp grades (0, 5, 15, 25, 35, and 39%). Ground reaction force data at 0% grade were effectively the same as data from the same force plate when mounted in the ground and were well within the range of intrasubject variability. Collectively, data from all tests demonstrate the fidelity of this ramp system and suggest it can be used to evaluate human locomotion over a range of slope intensities.

2006 ◽  
Vol 3 (4) ◽  
pp. 209-216 ◽  
Author(s):  
Pia Gustås ◽  
Christopher Johnston ◽  
Stig Drevemo

AbstractThe objective of the present study was to compare the hoof deceleration and ground reaction forces following impact on two different surfaces. Seven unshod Standardbreds were trotted by hand at 3.0–5.7 m s− 1 over a force plate covered by either of the two surfaces, sandpaper or a 1 cm layer of sand. Impact deceleration data were recorded from one triaxial accelerometer mounted on the fore- and hind hooves, respectively. Ground reaction force data were obtained synchronously from a force plate, sampled at 4.8 kHz. The differences between the two surfaces were studied by analysing representative deceleration and force variables for individual horses. The maximum horizontal peak deceleration and the loading rates of the vertical and the horizontal forces were significantly higher on sandpaper compared with the sand surface (P < 0.001). In addition, the initial vertical deceleration was significantly higher on sandpaper in the forelimb (P < 0.001). In conclusion, it was shown that the different qualities of the ground surface result in differences in the hoof-braking pattern, which may be of great importance for the strength of the distal horse limb also at slow speeds.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Fabian Horst ◽  
Djordje Slijepcevic ◽  
Marvin Simak ◽  
Wolfgang I. Schöllhorn

AbstractThe Gutenberg Gait Database comprises data of 350 healthy individuals recorded in our laboratory over the past seven years. The database contains ground reaction force (GRF) and center of pressure (COP) data of two consecutive steps measured - by two force plates embedded in the ground - during level overground walking at self-selected walking speed. The database includes participants of varying ages, from 11 to 64 years. For each participant, up to eight gait analysis sessions were recorded, with each session comprising at least eight gait trials. The database provides unprocessed (raw) and processed (ready-to-use) data, including three-dimensional GRF and two-dimensional COP signals during the stance phase. These data records offer new possibilities for future studies on human gait, e.g., the application as a reference set for the analysis of pathological gait patterns, or for automatic classification using machine learning. In the future, the database will be expanded continuously to obtain an even larger and well-balanced database with respect to age, sex, and other gait-specific factors.


Author(s):  
D Hynd ◽  
S C Hughes ◽  
D J Ewins

Force-plate measurement of the ground reaction force (GRF) has, for many years, been considered a vital component of the comprehensive assessment of human gait in the clinical context. For example, the data can be used in the adjustment of prostheses and orthoses and in identifying the mechanisms underlying a gait dysfunction. However, commercial force plates are usually only capable of measuring GRF data from one step in a single traverse. That can lead to problems of ‘targeting’ and, with less able subjects, fatigue before the necessary data have been collected. Previous work at the University of Surrey resulted in a prototype dual-platform force walkway capable of measuring the vertical component of the GRF and estimating the position of application of that force for multiple foot contacts in a single traverse. In addition, temporal-spatial information, e.g. speed and step length, could also be determined. This paper describes the development of a longer walkway that can measure the three orthogonal components of the GRF and provide a more accurate estimate of the position of application of that force. Software to allow the rapid reduction of gait data to useful clinical information has also been developed.


2017 ◽  
Vol 33 (3) ◽  
pp. 211-215
Author(s):  
Tomomasa Nakamura ◽  
Yuriko Yoshida ◽  
Hiroshi Churei ◽  
Junya Aizawa ◽  
Kenji Hirohata ◽  
...  

The aim of this study was to analyze the effect of teeth clenching on dynamic balance at jump landing. Twenty-five healthy subjects performed jump-landing tasks with or without teeth clenching. The first 3 trials were performed with no instruction; subsequently, subjects were ordered to clench at the time of landing in the following 3 trials. We collected the data of masseter muscle activity by electromyogram, the maximum vertical ground reaction force (vGRFmax) and center of pressure (CoP) parameters by force plate during jump-landing. According to the clenching status of control jump-landing, all participants were categorized into a spontaneous clenching group and no clenching group, and the CoP data were compared. The masseter muscle activity was correlated with vGRFmax during anterior jump-landing, while it was not correlated with CoP. In comparisons between the spontaneous clenching and the no clenching group during anterior jump-landing, the spontaneous clenching group showed harder landing and the CoP area became larger than the no clenching group. There were no significant differences between pre- and postintervention in both spontaneous clenching and no clenching groups. The effect of teeth clenching on dynamic balance during jump-landing was limited.


2002 ◽  
Vol 12 (1) ◽  
pp. 16-22 ◽  
Author(s):  
Andreas Hofmann ◽  
Marko Popovic ◽  
Hugh Herr

A three-dimensional numerical model of human standing is presented that reproduces the dynamics of simple swaying motions while in double-support. The human model is structurally realistic, having both trunk and two legs with segment lengths and mass distributions defined using human morphological data from the literature. In this investigation, model stability in standing is achieved through the application of a high-level reduced-order control system where stabilizing forces are applied to the model's trunk by virtual spring- damper elements. To achieve biologically realistic model dynamics, torso position and ground reaction force data measured on human subjects are used as demonstration data in a supervised learning strategy. Using Powell's method, the error between simulation data and measured human data is minimized by varying the virtual high-level force field. Once optimized, the model is shown to track torso position and ground reaction force data from human demonstrations. With only these limited demonstration data, the humanoid model sways in a biologically realistic manner. The model also reproduces the center-of-pressure trajectory beneath the foot, even though no error term for this is included in the optimization algorithm. This indicates that the error terms used (the ones for torso position and ground reaction force) are sufficient to compute the correct joint torques such that independent metrics, like center-of-pressure trajectory, are correct.


2018 ◽  
Vol 34 (3) ◽  
pp. 236-239
Author(s):  
Alexandra S. Voloshina ◽  
Daniel P. Ferris

Studying human and animal locomotion on an uneven terrain can be beneficial to basic science and applied studies for clinical and robotic applications. Traditional biomechanical analysis of human locomotion has often been limited to laboratory environments with flat, smooth runways and treadmills. The authors modified a regular exercise treadmill by attaching wooden blocks to the treadmill belt to yield an uneven locomotion surface. To ensure that these treadmill modifications facilitated biomechanical measurements, the authors compared ground reaction force data collected while a subject ran on the modified instrumented treadmill with a smooth surface with data collected using a conventional instrumented treadmill. Comparisons showed only minor differences. These results suggest that adding an uneven surface to a modified treadmill is a viable option for studying human or animal locomotion on an uneven terrain. Other types of surfaces (eg, compliant blocks) could be affixed in a similar manner for studies on other types of locomotion surfaces.


2020 ◽  
Vol 55 (5) ◽  
pp. 488-493 ◽  
Author(s):  
Robert C. Lynall ◽  
Kody R. Campbell ◽  
Timothy C. Mauntel ◽  
J. Troy Blackburn ◽  
Jason P. Mihalik

Context Researchers have suggested that balance deficiencies may linger during functional activities after concussion recovery. Objective To determine whether participants with a history of concussion demonstrated dynamic balance deficits as compared with control participants during single-legged hops and single-legged squats. Design Cross-sectional study. Setting Laboratory. Patients or Other Participants A total of 15 previously concussed participants (6 men, 9 women; age = 19.7 ± 0.9 years, height = 169.2 ± 9.4 cm, mass = 66.0 ± 12.8 kg, median time since concussion = 126 days [range = 28–432 days]) were matched with 15 control participants (6 men, 9 women; age = 19.7 ± 1.6 years, height = 172.3 ± 10.8 cm, mass = 71.0 ± 10.4 kg). Intervention(s) During single-legged hops, participants jumped off a 30-cm box placed at 50% of their height behind a force plate, landed on a single limb, and attempted to achieve a stable position as quickly as possible. Participants performed single-legged squats while standing on a force plate. Main Outcome Measure(s) Time to stabilization (TTS; time for the normalized ground reaction force to stabilize after landing) was calculated during the single-legged hop, and center-of-pressure path and speed were calculated during single-legged squats. Groups were compared using analysis of covariance, controlling for average days since concussion. Results The concussion group demonstrated a longer TTS than the control group during the single-legged hop on the nondominant leg (mean difference = 0.35 seconds [95% confidence interval = 0.04, 0.64]; F2,27 = 5.69, P = .02). No TTS differences were observed for the dominant leg (F2,27 = 0.64, P = .43). No group differences were present for the single-legged squat on either leg (P ≥ .11). Conclusions Dynamic balance-control deficits after concussion may contribute to an increased musculoskeletal injury risk. Given our findings, we suggest that neuromuscular deficits currently not assessed after concussion may linger. Time to stabilization is a clinically applicable measure that has been used to distinguish patients with various pathologic conditions, such as chronic ankle instability and anterior cruciate ligament reconstruction, from healthy control participants. Whereas the single-legged squat may not sufficiently challenge balance control, future study of the more dynamic single-legged hop is needed to determine its potential diagnostic and prognostic value after concussion.


2012 ◽  
Vol 12 (05) ◽  
pp. 1250030 ◽  
Author(s):  
LIN-HWA WANG ◽  
KUO-CHENG LO ◽  
FONG-CHIN SU

The present study investigated the adequacy of the interaction between the center of mass (COM) and the center of pressure (COP) for maintaining dynamic stability during Tai Chi Chuan (TCC) Push Hands movements in a fixed stance. The COM of the whole body and COP were calculated. Four TCC experts, with 10.3 ± 1.7 years' experience in the Push Hands technique, and 4 TCC beginners, with 2.5 ± 1.3 years' Push Hands experience, were recruited. An Expert Vision Eagle motion analysis system collected kinematic data and 4 Kistler force plates collected the ground reaction force data. The expert group of TCC practitioners showed a significantly more vertical (P = 0.001) direction in the neutralizing circle, and significantly larger values for anterior–posterior (A–P) (P = 0.006) and vertical (P = 0.0004) displacement in the enticing circle, than the beginner group. Compared with the beginner group, the expert group demonstrated significantly greater velocity A–P (P = 0.001) and vertical (P = 0.001) COM displacements in the enticing circle. A significant extent main effect (P = 0.0028) was observed for the COPA–P excursion between the expert and beginner groups during Push Hands movements. The greater A–P force generated by both groups during the initiation of the Push Hands cycle probably reflects the more rapid and forward-oriented nature of this movement. The TCC beginners might have difficulties with movement transfers because of disruptions in the temporal sequencing of the forces. Overall, results indicated that the initial experience-related differences in COM transfers are reflected in the Push Hands movement cycle.


2005 ◽  
Vol 95 (6) ◽  
pp. 531-541 ◽  
Author(s):  
Bart Van Gheluwe ◽  
Kevin A. Kirby ◽  
Friso Hagman

The mechanical effects of genu valgum and varum deformities on the subtalar joint were investigated. First, a theoretical model of the forces within the foot and lower extremity during relaxed bipedal stance was developed predicting the rotational effect on the subtalar joint due to genu valgum and varum deformities. Second, a kinetic gait study was performed involving 15 subjects who walked with simulated genu valgum and genu varum over a force plate and a plantar pressure mat to determine the changes in the ground reaction force vector within the frontal plane and the changes in the center-of-pressure location on the plantar foot. These results predicted that a genu varum deformity would tend to cause a subtalar pronation moment to increase or a supination moment to decrease during the contact and propulsion phases of walking. With genu valgum, it was determined that during the contact phase a subtalar pronation moment would increase, whereas in the early propulsive phase, a subtalar supination moment would increase or a pronation moment would decrease. However, the current inability to track the spatial position of the subtalar joint axis makes it difficult to determine the absolute direction and magnitudes of the subtalar joint moments. (J Am Podiatr Med Assoc 95(6): 531–541, 2005)


2009 ◽  
Vol 25 (4) ◽  
pp. 401-406 ◽  
Author(s):  
Saryn R. Goldberg ◽  
Thomas M. Kepple ◽  
Steven J. Stanhope

We increased the accuracy of an instrumented treadmill’s measurement of center of pressure and force data by calibrating in situ and optimizing the transformation between the motion capture and treadmill force plate coordinate systems. We calibrated the device in situ by applying known vertical and shear loads at known locations across the tread surface and calculating a 6 × 6 calibration matrix for the 6 output forces and moments. To optimize the transformation, we first estimated the transformation based on a locating jig and then measured center-of-pressure error across the treadmill force plate using the CalTester tool. We input these data into an optimization scheme to find the transformation between the motion capture and treadmill force plate coordinate systems that minimized the error in the center-of-pressure measurements derived from force plate and motion capture sources. When the calibration and transformation optimizations were made, the average measured error in the center of pressure was reduced to approximately 1 mm when the treadmill was stationary and to less than 3 mm when moving. Using bilateral gait data, we show the importance of calibrating these devices in situ and performing transformation optimizations.


Sign in / Sign up

Export Citation Format

Share Document