A Meta-Analysis of the Effects of Aerobic Exercise on the Basal Level of Endothelial Progenitor Cells in Middle-Aged and Older Adults

Author(s):  
Xiaoke Chen ◽  
Xinzheng Sun ◽  
Di Gao ◽  
Dan Qiu ◽  
Hui He

Circulatory endothelial progenitor cells (EPCs) play an important role in repairing damaged vascular endothelium and preventing cardiovascular diseases. The decrease in level of circulating EPCs in middle-aged and older adults can lead to an increase in cardiovascular events. Researchers have carried out several studies on the effects of aerobic exercise on circulating EPCs in middle-aged and older adults, but the results vary from one study to another. The aim of this study therefore is to systematically evaluate the effect of aerobic exercise on the basal level of circulating EPCs in middle-aged and older adults by meta-analysis. Randomized controlled trial studies on the effects of aerobic exercise on EPCs were searched for from CNKI, PubMed, EBSCO, Cochrane Library, Web of Science, and Embase databases. The literature was screened according to inclusion and exclusion criteria, research data were extracted, and the literature quality was evaluated by Cochrane scale. Software Review Manager (version 5.3) and Stata (version 15.0) were used for data analysis. A total of nine articles were included in this analysis, including 165 participants (40 healthy adults and 125 patients) who received exercise interventions and 162 participants (40 healthy adults and 122 patients) who served as the control, with an age range from 58 to 70 years. The meta-analysis found that long-term (≥12 weeks) aerobic exercise could improve the level of EPCs in the peripheral circulation (standardized mean differences [SMD] = 0.53, 95% confidence interval [0.30, 0.76], p < .01). The subgroup analysis found that aerobic exercise improved EPCs in healthy people better than in people with cardiovascular disease and that the intervention time needs to be over 12 weeks to have a significant impact. In conclusion, the authors suggest that middle-aged and older adults can improve their EPCs quantity by engaging in moderate-intensity aerobic exercise four to five times per week for no less than 12 weeks to reduce the risk of cardiovascular disease.

2016 ◽  
Vol 25 (1) ◽  
pp. 51-6
Author(s):  
Mariani Santosa ◽  
Ermita I.I. Ilyas ◽  
Radiana D. Antarianto

Background: The increasing number of circulating CD31+ endothelial progenitor cells is one of the important factors for maintaining vascular homeostasis. Exercise will effectively increase the number of circulating CD31+ endothelial progenitor cells. This study aims to determine the effect of moderate-intensity acute aerobic exercise duration on the percentage of circulating CD31+ cells in untrained healthy young adult subjects.Methods: This study was an experimental study. Untrained healthy volunteers (n=20) performed ergocycle at moderate-intensity (64–74% maximum heart rate) for 10 minutes or 30 minutes. Immediately before and 10 minutes after exercise, venous blood samples were drawn. The percentage of CD31+ cells in peripheral blood was analyzed using flow cytometry. Data was statistically analyzed using student t-test.Results: There were no significant differences in the mean percentage of circulating CD31+ cells before and after exercise for 10 minutes and 30 minutes (p>0.05). However, there was a different trend in the percentage of circulating CD31+ cells after exercise for 10 minutes and 30 minutes. In the 10 minutes duration, 50% of subjects showed increase. Whereas in the 30 minutes duration, 80% of subjects showed increase.Conclusion: The percentage of circulating CD31+ cells before and after exercise for 10 minutes was not different compared to 30 minutes. However, data analysis shows that majority of subjects (80%) had increased in the percentage of circulating CD31+ cells after 30 minutes exercise.


2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Caterina Oriana Aragona ◽  
Egidio Imbalzano ◽  
Federica Mamone ◽  
Valentina Cairo ◽  
Alberto Lo Gullo ◽  
...  

Objective. To identify, evaluate, and synthesize evidence on the predictive power of circulating endothelial progenitor cells (EPCs) in cardiovascular disease, through a systematic review of quantitative studies.Data Sources. MEDLINE was searched using keywords related to “endothelial progenitor cells” and “endothelium” and, for the different categories, respectively, “smoking”; “blood pressure”; “diabetes mellitus” or “insulin resistance”; “dyslipidemia”; “aging” or “elderly”; “angina pectoris” or “myocardial infarction”; “stroke” or “cerebrovascular disease”; “homocysteine”; “C-reactive protein”; “vitamin D”.Study Selection. Database hits were evaluated against explicit inclusion criteria. From 927 database hits, 43 quantitative studies were included.Data Syntheses. EPC count has been suggested for cardiovascular risk estimation in the clinical practice, since it is currently accepted that EPCs can work as proangiogenic support cells, maintaining their importance as regenerative/reparative potential, and also as prognostic markers.Conclusions. EPCs showed an important role in identifying cardiovascular risk conditions, and to suggest their evaluation as predictor of outcomes appears to be reasonable in different defined clinical settings. Due to their capability of proliferation, circulation, and the development of functional progeny, great interest has been directed to therapeutic use of progenitor cells in atherosclerotic diseases. This trial is registered with registration number: ProsperoCRD42015023717.


Cells ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 423 ◽  
Author(s):  
Nicoleta Alexandru ◽  
Eugen Andrei ◽  
Florentina Safciuc ◽  
Emanuel Dragan ◽  
Ana Maria Balahura ◽  
...  

Atherosclerosis and cardiovascular disease development is the outcome of intermediate processes where endothelial dysfunction and vascular inflammation are main protagonists. Cell-derived microvesicles (MVs), endothelial progenitor cells (EPCs), and circulating microRNAs (miRNAs) are known as biomarkers and potential regulators for atherosclerotic vascular disease, but their role in the complexity of the inflammatory process and in the mechanism of vascular restoration is far from clear. We aimed to evaluate the biological activity and functional role of MVs, in particular of the EPCs-derived MVs (MVEs), of healthy origins in reducing atherosclerotic vascular disease development. The experiments were performed on hamsters divided into the following groups: simultaneously hypertensive–hyperlipidemic (HH group) by combining two feeding conditions for 4 months; HH with retro-orbital sinus injection containing 1 × 105 MVs or MVEs from control hamsters, one dose per month for 4 months of HH diet, to prevent atherosclerosis (HH-MVs or HH-MVEs group); and controls (C group), age-matched normal healthy animals. We found that circulating MV and MVE transplantation of healthy origins significantly reduces atherosclerosis development via (1) the mitigation of dyslipidemia, hypertension, and circulating EPC/cytokine/chemokine levels and (2) the structural and functional remodeling of arterial and left ventricular walls. We also demonstrated that (1) circulating MVs contain miRNAs; this was demonstrated by validating MVs and MVEs as transporters of Ago2-miRNA, Stau1-miRNA, and Stau2-miRNA complexes and (2) MV and MVE administration significantly protect against atherosclerotic cardiovascular disease via transfer of miR-223, miR-21, miR-126, and miR-146a to circulating late EPCs. It should be mentioned that the favorable effects of MVEs were greater than those of MVs. Our findings suggest that allogenic MV and MVE administration of healthy origins could counteract HH diet-induced detrimental effects by biologically active miR-10a, miR-21, miR-126, and miR-146a transfer to circulating EPCs, mediating their vascular repair function in atherosclerosis processes.


2010 ◽  
Vol 120 (7) ◽  
pp. 263-283 ◽  
Author(s):  
Shaundeep Sen ◽  
Stephen P. McDonald ◽  
P. Toby H. Coates ◽  
Claudine S. Bonder

Bone-marrow-derived EPCs (endothelial progenitor cells) play an integral role in the regulation and protection of the endothelium, as well as new vessel formation. Peripheral circulating EPC number and function are robust biomarkers of vascular risk for a multitude of diseases, particularly CVD (cardiovascular disease). Importantly, using EPCs as a biomarker is independent of both traditional and non-traditional risk factors (e.g. hypertension, hypercholesterolaemia and C-reactive protein), with infused ex vivo-expanded EPCs showing potential for improved endothelial function and either reducing the risk of events or enhancing recovery from ischaemia. However, as the number of existing cardiovascular risk factors is variable between patients, simple EPC counts do not adequately describe vascular disease risk in all clinical conditions and, as such, the risk of CVD remains. It is likely that this limitation is attributable to variation in the definition of EPCs, as well as a difference in the interaction between EPCs and other cells involved in vascular control such as pericytes, smooth muscle cells and macrophages. For EPCs to be used regularly in clinical practice, agreement on definitions of EPC subtypes is needed, and recognition that function of EPCs (rather than number) may be a better marker of vascular risk in certain CVD risk states. The present review focuses on the identification of measures to improve individual risk stratification and, further, to potentially individualize patient care to address specific EPC functional abnormalities. Herein, we describe that future therapeutic use of EPCs will probably rely on a combination of strategies, including optimization of the function of adjunct cell types to prime tissues for the effect of EPCs.


Sign in / Sign up

Export Citation Format

Share Document