Difference in Response Latency of the Peroneus Longus Between the Dominant and Nondominant Legs

2011 ◽  
Vol 20 (3) ◽  
pp. 321-332 ◽  
Author(s):  
Adam C. Knight ◽  
Wendi H. Weimar

Context:The latency of the peroneus longus in response to an inversion perturbation is a key component in the prevention of lateral ankle sprains. In addition, the dominant ankle is sprained more frequently than the nondominant ankle, but the cause of this has not been examined.Objective:To investigate the combination of these 2 research-supported statements, the purpose of this study was to use an inversion perturbation that replicates the mechanism of a lateral ankle sprain to determine whether there is a difference in the latency of the peroneus longus between the dominant and nondominant legs.Design:Repeated-measures single-group design.Setting:University laboratory.Participants:15 physically active healthy volunteers with no previous history of an ankle sprain or lower extremity surgery or fracture.Interventions:Outer sole with fulcrum was used to cause 25° of inversion at the subtalar joint on landing from a 27-cm step-down task. Participants performed 10 trials on both the dominant and nondominant leg.Main Outcome Measures:2 latency measures of the peroneus longus of both the dominant and nondominant leg, calculated as the amount of time from the moment of touchdown of the fulcrum until muscle activity exceeded 5 and 10 SD above baseline muscle activity.Results:The latency of the peroneus longus of the nondominant leg was significantly shorter when using both 5 SD (F1,14 = 9.34, P = .009, d = .895) and 10 SD (F1,14 = 18.56, P = .001, d = .920) above baseline muscle activity.Conclusions:This difference in latency may be a result of the different demands placed on the dominant and nondominant legs during activity and may predispose the dominant ankle to a greater number of ankle sprains than the nondominant ankle.

2013 ◽  
Vol 22 (4) ◽  
pp. 272-278 ◽  
Author(s):  
Adam C. Knight ◽  
Wendi H. Weimar

Context:The dominant and nondominant legs respond asymmetrically during landing tasks, and this difference may occur during an inversion perturbation and provide insight into the role of ankle-evertor and -invertor muscle activity.Objective:To determine if there is a difference in the ratio of evertor to invertor activity between the dominant and nondominant legs and outer-sole conditions when the ankle is forced into inversion.Design:Repeated-measures single-group design.Setting:University laboratory.Participants:15 physically active healthy volunteers with no previous history of an ankle sprain or lower extremity surgery or fracture.Interventions:An outer sole with fulcrum was used to cause 25° of inversion at the subtalar joint after landing from a 27-cm step-down task. Participants performed 10 fulcrum trials on both the dominant and nondominant leg.Main Outcome Measures:The ratio of evertor to invertor muscle activity 200 ms before and 200 ms after the inversion perturbation was measured using electromyography. This ratio was the dependent variable. Independent variables included outer-sole condition (fulcrum, flat), leg (dominant, nondominant), and time (prelanding, postlanding). The data were analyzed with separate 2-way repeated-measures ANOVA, 1 for the prelanding ratios and 1 for the postlanding ratios.Results:For the postlanding ratios, the fulcrum outer sole had a significantly greater (P < .05) ratio than the flat outer sole, and the nondominant leg had a significantly greater (P < .05) ratio than the dominant leg.Conclusions:These results indicate that a greater evertor response is produced when the ankle is forced into inversion, and a greater response is produced for the nondominant leg, which may function better during a postural-stabilizing task than the dominant leg.


2011 ◽  
Vol 27 (4) ◽  
pp. 283-290 ◽  
Author(s):  
Adam C. Knight ◽  
Wendi H. Weimar

The purpose of this investigation was to determine the effect of different types of ankle sprains on the response latency of the peroneus longus and peroneus brevis to an inversion perturbation, as well as the time to complete the perturbation (time to maximum inversion). To create a forced inversion moment of the ankle, an outer sole with fulcrum was used to cause 25 degrees of inversion at the ankle upon landing from a 27 cm step-down task. Forty participants completed the study: 15 participants had no history of any ankle sprain, 15 participants had a history of a lateral ankle sprain, and 10 participants had a history of a high ankle sprain. There was not a significant difference between the injury groups for the latency measurements or the time to maximum inversion. These findings indicate that a previous lateral ankle sprain or high ankle sprain does not affect the latency of the peroneal muscles or the time to complete the inversion range of motion.


2017 ◽  
Vol 26 (6) ◽  
pp. 530-535 ◽  
Author(s):  
Yuta Koshino ◽  
Tomoya Ishida ◽  
Masanori Yamanaka ◽  
Mina Samukawa ◽  
Takumi Kobayashi ◽  
...  

Context:Identifying the foot positions that are vulnerable to lateral ankle sprains is important for injury prevention. The effects of foot position in the transverse plane on ankle biomechanics during landing are unknown.Objective:To examine the effects of toe-in or toe-out positioning on ankle inversion motion and moment during single-leg landing.Design:Repeated measures.Setting:Motion analysis laboratory.Participants:18 healthy participants (9 men and 9 women).Interventions:Participants performed single-leg landing trials from a 30-cm high box under 3 conditions: natural landing, foot internally rotated (toe-in), and foot externally rotated (toe-out).Main Outcome Measures:4 toe-in or toe-out angles were calculated against 4 reference coordinates (laboratory, pelvis, thigh, and shank) in the transverse plane. Ankle inversion angle, angular velocity, and external moment in the 200 ms after initial foot-to-ground contact were compared between the 3 landing conditions.Results:All toe-in or toe-out angles other than those calculated against the shank were significantly different between each of the 3 landing conditions (P < .001). Ankle inversion angle, angular velocity, and moment were highest during toe-in landings (P < .01), while eversion angle and moment were highest during toe-out landings (P < .001). The effect sizes of these differences were large. Vertical ground reaction forces were not different between the 3 landing conditions (P = .290).Conclusions:Toe-in or toe-out positioning during single-leg landings impacts on ankle inversion and eversion motion and moment. Athletes could train not to land with the toe-in positioning to prevent lateral ankle sprains.


Sports ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 41
Author(s):  
Philippe Terrier ◽  
Sébastien Piotton ◽  
Ilona M. Punt ◽  
Jean-Luc Ziltener ◽  
Lara Allet

A prominent feature of ankle sprains is their variable clinical course. The difficulty of providing a reliable early prognosis may be responsible for the substantial rate of poor outcomes after an ankle sprain. The aim of the present study was to evaluate the prognostic value of objective clinical measures, pain, and functional scores for ankle sprain recovery. Fifty-two participants suffering from lateral ankle sprain were included. Sprain status was assessed four weeks following injury and included evaluations of ankle range of motion, strength, function, and pain. Seven months following injury, a second assessment classified the patients into recovered and non-recovered groups using ankle ability measures. Following a predictor pre-selection procedure, logistic regressions evaluated the association between the four-week predictors and the seven-month recovery status. Twenty-seven participants (52%) fully recovered and 25 did not (48%). The results of the logistic regressions showed that walking pain was negatively associated with the probability of recovering at seven months (odds ratio: 0.71, 95% CI: 0.53–0.95). Pain four weeks after ankle sprain had relevant predictive value for long-term recovery. Special attention should be paid to patients reporting persistent pain while walking four weeks following sprain to reduce the risk of chronicity.


2017 ◽  
Vol 26 (3) ◽  
pp. 260-268
Author(s):  
Patti Syvertson ◽  
Emily Dietz ◽  
Monica Matocha ◽  
Janet McMurray ◽  
Russell Baker ◽  
...  

Context:Achilles tendinopathy is relatively common in both the general and athletic populations. The current gold standard for the treatment of Achilles tendinopathy is eccentric exercise, which can be painful and time consuming. While there is limited research on indirect treatment approaches, it has been proposed that tendinopathy patients do respond to indirect approaches in fewer treatments without provoking pain.Objective:To determine the effectiveness of using a treatment-based-classification (TBC) algorithm as a strategy for classifying and treating patients diagnosed with Achilles tendinopathy.Participants:11 subjects (mean age 28.0 ±15.37 y) diagnosed with Achilles tendinopathy.Design:Case series.Setting:Participants were evaluated, diagnosed, and treated at multiple clinics.Main Outcome Measures:Numeric Rating Scale (NRS), Disablement in the Physically Active Scale (DPA Scale), Victorian Institute of Sport Assessment–Achilles (VISA-A), Global Rating of Change (GRC), and Nirschl Phase Rating Scale were recorded to establish baseline scores and evaluate participant progress.Results:A repeated-measures ANOVA was conducted to analyze NRS scores from initial exam to discharge and at 1-mo follow-up. Paired t tests were analyzed to determine the effectiveness of using a TBC algorithm from initial exam to discharge on the DPA Scale and VISA-A. Descriptive statistics were evaluated to determine outcomes as reported on the GRC.Conclusion:The results of this case series provide evidence that using a TBC algorithm can improve function while decreasing pain and disability in Achilles tendinopathy participants.


2011 ◽  
Vol 46 (3) ◽  
pp. 263-269 ◽  
Author(s):  
Lindsey W. Klykken ◽  
Brian G. Pietrosimone ◽  
Kyung-Min Kim ◽  
Christopher D. Ingersoll ◽  
Jay Hertel

Context: Neuromuscular deficits in leg muscles that are associated with arthrogenic muscle inhibition have been reported in people with chronic ankle instability, yet whether these neuromuscular alterations are present in individuals with acute sprains is unknown. Objective: To compare the effect of acute lateral ankle sprain on the motor-neuron pool excitability (MNPE) of injured leg muscles with that of uninjured contralateral leg muscles and the leg muscles of healthy controls. Design: Case-control study. Setting: Laboratory. Patients or Other Participants: Ten individuals with acute ankle sprains (6 females, 4 males; age = 19.2 ± 3.8 years, height = 169.4 ± 8.5 cm, mass = 66.3 ±11.6 kg) and 10 healthy individuals (6 females, 4 males; age = 20.6 ± 4.0 years, height = 169.9 ± 10.6 cm, mass = 66.3 ± 10.2 kg) participated. Intervention(s): The independent variables were group (acute ankle sprain, healthy) and limb (injured, uninjured). Separate dependent t tests were used to determine differences in MNPE between legs. Main Outcome Measure(s): The MNPE of the soleus, fibularis longus, and tibialis anterior was measured by the maximal Hoffmann reflex (Hmax) and maximal muscle response (Mmax) and was then normalized using the Hmax:Mmax ratio. Results: The soleus MNPE in the ankle-sprain group was higher in the injured limb (Hmax:Mmax = 0.63; 95% confidence interval [CI], 0.46, 0.80) than in the uninjured limb (Hmax:Mmax = 0.47; 95% CI, 0.08, 0.93) (t6 = 3.62, P = .01). In the acute ankle-sprain group, tibialis anterior MNPE tended to be lower in the injured ankle (Hmax:Mmax = 0.06; 95% CI, 0.01, 0.10) than in the uninjured ankle (Hmax:Mmax = 0.22; 95% CI, 0.09, 0.35), but this finding was not different (t9 = −2.01, P = .07). No differences were detected between injured (0.22; 95% CI, 0.14, 0.29) and uninjured (0.25; 95% CI, 0.12, 0.38) ankles for the fibularis longus in the ankle-sprain group (t9 = −0.739, P = .48). We found no side-to-side differences in any muscle among the healthy group. Conclusions: Facilitated MNPE was present in the involved soleus muscle of patients with acute ankle sprains, but no differences were found in the fibularis longus or tibialis anterior muscles.


2015 ◽  
Vol 24 (3) ◽  
pp. 293-299 ◽  
Author(s):  
Kazem Malmir ◽  
Gholam Reza Olyaei ◽  
Saeed Talebian ◽  
Ali Ashraf Jamshidi

Context:Cyclic movements and muscle fatigue may result in musculoskeletal injuries by inducing changes in neuromuscular control. Ankle frontal-plane neuromuscular control has rarely been studied in spite of its importance.Objective:To compare the effects of peroneal muscle fatigue and a cyclic passive-inversion (CPI) protocol on ankle neuromuscular control during a lateral hop.Design:Quasi-experimental, repeated measures.Setting:University laboratory.Participants:22 recreationally active, healthy men with no history of ankle sprain or giving way.Interventions:Participants performed a lateral hop before and after 2 interventions on a Biodex dynamometer. They were randomly assigned to intervention order and interventions were 1 wk apart. A passive intervention included 40 CPIs at 5°/s through 80% of maximum range of motion, and a fatigue intervention involved an isometric eversion at 40% of the maximal voluntary isometric contraction until the torque decreased to 50% of its initial value.Main Outcome Measures:Median frequency of the peroneus longus during the fatigue protocol, energy absorption by the viscoelastic tissues during the CPI protocol, and feedforward onset and reaction time of the peroneus longus during landing.Results:A significant fall in median frequency (P < .05) and a significant decrease in energy absorption (P < .05) confirmed fatigue and a change in viscoelastic behavior, respectively. There was a significant main effect of condition on feedforward onset and reaction time (P < .05). No significant main effect of intervention or intervention × condition interaction was noted (P > .05). There was a significant difference between pre- and postintervention measures (P < .0125), but no significant difference was found between postintervention measures (P > .0125).Conclusions:Both fatigue and the CPI may similarly impair ankle neuromuscular control. Thus, in prolonged sports competitions and exercises, the ankle may be injured due to either fatigue or changes in the biomechanical properties of the viscoelastic tissues.


2016 ◽  
Vol 51 (3) ◽  
pp. 213-222 ◽  
Author(s):  
Fereshteh Pourkazemi ◽  
Claire Hiller ◽  
Jacqueline Raymond ◽  
Deborah Black ◽  
Elizabeth Nightingale ◽  
...  

The first step to identifying factors that increase the risk of recurrent ankle sprains is to identify impairments after a first sprain and compare performance with individuals who have never sustained a sprain. Few researchers have restricted recruitment to a homogeneous group of patients with first sprains, thereby introducing the potential for confounding.Context: To identify impairments that differ in participants with a recent index lateral ankle sprain versus participants with no history of ankle sprain.Objective: Cross-sectional study.Design: We recruited a sample of convenience from May 2010 to April 2013 that included 70 volunteers (age = 27.4 ± 8.3 years, height = 168.7 ± 9.5 cm, mass = 65.0 ± 12.5 kg) serving as controls and 30 volunteers (age = 31.1 ± 13.3 years, height = 168.3 ± 9.1 cm, mass = 67.3 ± 13.7 kg) with index ankle sprains.Patients or Other Participants: We collected demographic and physical performance variables, including ankle-joint range of motion, balance (time to balance after perturbation, Star Excursion Balance Test, foot lifts during single-legged stance, demi-pointe balance test), proprioception, motor planning, inversion-eversion peak power, and timed stair tests. Discriminant analysis was conducted to determine the relationship between explanatory variables and sprain status. Sequential discriminant analysis was performed to identify the most relevant variables that explained the greatest variance.Main Outcome Measure(s): The average time since the sprain was 3.5 ± 1.5 months. The model, including all variables, correctly predicted a sprain status of 77% (n = 23) of the sprain group and 80% (n = 56) of the control group and explained 40% of the variance between groups ( = 42.16, P = .03). Backward stepwise discriminant analysis revealed associations between sprain status and only 2 tests: Star Excursion Balance Test in the anterior direction and foot lifts during single-legged stance ( = 15.2, P = .001). These 2 tests explained 15% of the between-groups variance and correctly predicted group membership of 63% (n = 19) of the sprain group and 69% (n = 48) of the control group.Results: Balance impairments were associated with a recent first ankle sprain, but proprioception, motor control, power, and function were not.Conclusions:


2008 ◽  
Vol 43 (3) ◽  
pp. 293-304 ◽  
Author(s):  
Patrick O. McKeon ◽  
Jay Hertel

Abstract Objective: To answer the following clinical questions: (1) Is poor postural control associated with increased risk of a lateral ankle sprain? (2) Is postural control adversely affected after acute lateral ankle sprain? (3) Is postural control adversely affected in those with chronic ankle instability? Data Sources: PubMed and CINAHL entries from 1966 through October 2006 were searched using the terms ankle sprain, ankle instability, balance, chronic ankle instability, functional ankle instability, postural control, and postural sway. Study Selection: Only studies assessing postural control measures in participants on a stable force plate performing the modified Romberg test were included. To be included, a study had to address at least 1 of the 3 clinical questions stated above and provide adequate results for calculation of effect sizes or odds ratios where applicable. Data Extraction: We calculated odds ratios with 95% confidence intervals for studies assessing postural control as a risk factor for lateral ankle sprains. Effect sizes were estimated with the Cohen d and associated 95% confidence intervals for comparisons of postural control performance between healthy and injured groups, or healthy and injured limbs, respectively. Data Synthesis: Poor postural control is most likely associated with an increased risk of sustaining an acute ankle sprain. Postural control is impaired after acute lateral ankle sprain, with deficits identified in both the injured and uninjured sides compared with controls. Although chronic ankle instability has been purported to be associated with altered postural control, these impairments have not been detected consistently with the use of traditional instrumented measures. Conclusions: Instrumented postural control testing on stable force plates is better at identifying deficits that are associated with an increased risk of ankle sprain and that occur after acute ankle sprains than at detecting deficits related to chronic ankle instability.


2011 ◽  
Vol 20 (2) ◽  
pp. 157-173 ◽  
Author(s):  
KyungMo Han ◽  
Mark D. Ricard

Context:Several researchers have suggested that improving evertor strength and peroneus longus reaction time may help alleviate the symptoms of chronic ankle instability and reduce the rate of recurrent ankle sprains.Objectives:To determine the effectiveness of a 4-wk elastic-resistance exercise-training program on ankle-evertor strength and peroneus longus latency in subjects with and without a history of ankle sprains (HAS).Design:Randomized controlled clinical trial.Participants:40 subjects (20 male, 20 female; 20 HAS, 20 healthy). Ten subjects (5 male and 5 female) from each of the HAS and healthy groups were randomly assigned to exercise or control groups.Interventions:4-directional elastic-resistance exercise training 2 times/wk for 4 wk.Main Outcome Measures:Ankle-evertor strength and peroneal muscle latency after sudden inversion were measured before training, after 4 wk of training, and 4 wk posttraining.Results:Four weeks of elastic-resistance exercise training did not elicit significant changes in 1-repetition-maximum ankle-evertor strength between the exercise and control groups (P = .262), HAS and healthy groups (P = .329), or males and females (P = .927). Elastic-resistance exercise training did not elicit significant changes in peroneus longus muscle latency between the exercise and control groups (P = .102), HAS and healthy groups (P = .996), or males and females (P = .947).Conclusions:The 4-wk elastic-resistance exercise training had no effect on ankle-evertor strength and reflex latency of the peroneus longus after unexpected ankle inversion.


Sign in / Sign up

Export Citation Format

Share Document