Effects of Different Hip Rotations on Gluteus Medius and Tensor Fasciae Latae Muscle Activity During Isometric Side-Lying Hip Abduction

2013 ◽  
Vol 22 (4) ◽  
pp. 301-307 ◽  
Author(s):  
Ji-hyun Lee ◽  
Heon-seock Cynn ◽  
Sil-ah Choi ◽  
Tae-lim Yoon ◽  
Hyo-jung Jeong

Context:Gluteus medius (Gmed) weakness is associated with some lower-extremity injuries. People with Gmed weakness might compensate by activating the tensor fasciae latae (TFL). Different hip rotations in the transverse plane may affect Gmed and TFL muscle activity during isometric side-lying hip abduction (SHA).Objectives:To compare Gmed and TFL muscle activity and the Gmed:TFL muscle-activity ratio during SHA exercise with 3 different hip rotations.Design:The effects of different hip rotations on Gmed, TFL, and the Gmed:TFL muscle-activity ratio during isometric SHA were analyzed with 1-way, repeated-measures analysis of variance.Setting:University research laboratory.Participants:20 healthy university students were recruited in this study.Interventions:Participants performed isometric SHA: frontal SHA with neutral hip (frontal SHAN), frontal SHA with hip medial rotation (frontal SHA-MR), and frontal SHA with hip lateral rotation (frontal SHA-LR).Main Outcome Measures:Surface electromyography measured the activity of the Gmed and the TFL. A 1-way repeated-measures analysis of variance assessed the statistical significance of Gmed and TFL muscle activity. When there was a significant difference, a Bonferroni adjustment was performed.Results:Frontal SHA-MR showed significantly greater Gmed muscle activation than frontal SHA-N (P = .000) or frontal SHA-LR (P = .015). Frontal SHA-LR showed significantly greater TFL muscle activation than frontal SHA-N (P = .002). Frontal SHA-MR also resulted in a significantly greater Gmed:TFL muscle-activity ratio than frontal SHA-N (P = .004) or frontal SHA-LR (P = .000), and frontal SHA-N was significantly greater than frontal SHA-LR (P = .000).Conclusions:Frontal SHA-MR results in greater Gmed muscle activation and a higher Gmed:TFL muscle ratio.

2020 ◽  
Author(s):  
Seung-min Baik ◽  
Heon-seock Cynn ◽  
Jae-hun Shim ◽  
Ji-hyun Lee ◽  
A-reum Shin ◽  
...  

Abstract Context: Weakness of the gluteus medius and the gluteus maximus is associated with a variety of musculoskeletal disorders. However, activation of synergist muscles that are not targeted should be considered when prescribing side-lying hip abduction (SHA) exercises. Log-rolling positions may affect hip abductors activity during SHA. Objectives: To determine the effects of log-rolling positions on the gluteus medius, the gluteus maximus, and the tensor fasciae latae activity during SHA in participants with gluteus medius weakness. Design: The effects of different log-rolling positions on hip abductor activity during SHA were analyzed by one-way repeated-measures analysis of variance. Setting: University research laboratory. Participants: Twenty-one participants with gluteus medius weakness were recruited. Interventions: Three types of SHA were performed: SHA in the frontal plane with a neutral position (SHA-neutral), SHA in the frontal plane with an anterior log-rolling position (SHA-anterior rolling), and SHA in the frontal plane with a posterior log-rolling position (SHA-posterior rolling). Main Outcome Measures: Surface electromyography was used to measure the hip abductor activity. One-way repeated-measure analysis of variance was used to assess the statistical significance of the muscle activity. Results: SHA-anterior rolling showed significantly greater gluteus medius and gluteus maximus activation than SHA-neutral (P = .003 and P < .001, respectively) and SHA-posterior rolling (P < .001 and P < .001, respectively). SHA-neutral showed significantly greater gluteus medius and gluteus maximus activation than SHA-posterior rolling (P < .001 and P = .001, respectively). SHA-anterior rolling showed significantly less tensor fasciae latae activation than SHA-neutral (P < .001) and SHA-posterior rolling (P < .001). SHA-neutral showed significantly less tensor fasciae latae activation than SHA-posterior rolling (P < .001). Conclusion: SHA-anterior rolling may be an effective exercise to increase activation of the gluteus medius and the gluteus maximus while decreasing the tensor fasciae latae in participants with gluteus medius weakness.


Author(s):  
Seung-Min Baik ◽  
Heon-Seock Cynn ◽  
Chung-Hwi Yi ◽  
Ji-Hyun Lee ◽  
Jung-Hoon Choi ◽  
...  

BACKGROUND: The effectiveness of side-sling plank (SSP) exercises on trunk and hip muscle activation in subjects with gluteus medius (Gmed) weakness is unclear. OBJECTIVE: To quantify muscle activation of the rectus abdominis (RA), external oblique (EO), erector spinae (ES), lumbar multifidus (LM), Gmed, gluteus maximus (Gmax), and tensor fasciae latae (TFL) during SSP with three different hip rotations compared to side-lying hip abduction (SHA) exercise in subjects with Gmed weakness. METHODS: Twenty-two subjects with Gmed weakness were recruited. SHA and three types of SSP exercises were performed: SSP with neutral hip (SSP-N), hip lateral rotation (SSP-L), and hip medial rotation (SSP-M). Surface electromyography was used to measure the activation of the trunk and hip muscles. RESULTS: The trunk and hip muscles activations were generally significantly higher level during three SSP than SHA. SSP-M showed significantly lower EO activation while significantly higher ES and LM activation than SSP-L. Gmed activation was significantly higher during SSP-M than during SSP-L. TFL activation was significantly lower during SSP-M than during SSP-N and SSP-L. CONCLUSIONS: SSP could be prescribed for patients who have reduced Gmed strength after injuries. Especially, SSP-M could be applied for patients who have Gmed weakness with dominant TFL.


2012 ◽  
Vol 47 (1) ◽  
pp. 15-23 ◽  
Author(s):  
Joseph M. McBeth ◽  
Jennifer E. Earl-Boehm ◽  
Stephen C. Cobb ◽  
Wendy E. Huddleston

Context: Lower extremity overuse injuries are associated with gluteus medius (GMed) weakness. Understanding the activation of muscles about the hip during strengthening exercises is important for rehabilitation. Objective: To compare the electromyographic activity produced by the gluteus medius (GMed), tensor fascia latae (TFL), anterior hip flexors (AHF), and gluteus maximus (GMax) during 3 hip-strengthening exercises: hip abduction (ABD), hip abduction with external rotation (ABD-ER), and clamshell (CLAM) exercises. Design: Controlled laboratory study. Setting: Laboratory. Patients or Other Participants: Twenty healthy runners (9 men, 11 women; age = 25.45 ± 5.80 years, height = 1.71 ± 0.07 m, mass = 64.43 ± 7.75 kg) participated. Intervention(s): A weight equal to 5% body mass was affixed to the ankle for the ABD and ABD-ER exercises, and an equivalent load was affixed for the CLAM exercise. A pressure biofeedback unit was placed beneath the trunk to provide positional feedback. Main Outcome Measure(s): Surface electromyography (root mean square normalized to maximal voluntary isometric contraction) was recorded over the GMed, TFL, AHF, and GMax. Results: Three 1-way, repeated-measures analyses of variance indicated differences for muscle activity among the ABD (F3,57 = 25.903, P<.001), ABD-ER (F3,57 = 10.458, P<.001), and CLAM (F3,57 = 4.640, P=.006) exercises. For the ABD exercise, the GMed (70.1 ± 29.9%), TFL (54.3 ± 19.1%), and AHF (28.2 ± 21.5%) differed in muscle activity. The GMax (25.3 ± 24.6%) was less active than the GMed and TFL but was not different from the AHF. For the ABD-ER exercise, the TFL (70.9 ± 17.2%) was more active than the AHF (54.3 ± 24.8%), GMed (53.03 ± 28.4%), and GMax (31.7 ± 24.1 %). For the CLAM exercise, the AHF (54.2 ± 25.2%) was more active than the TFL (34.4 ± 20.1%) and GMed (32.6 ± 16.9%) but was not different from the GMax (34.2 ± 24.8%). Conclusions: The ABD exercise is preferred if targeted activation of the GMed is a goal. Activation of the other muscles in the ABD-ER and CLAM exercises exceeded that of GMed, which might indicate the exercises are less appropriate when the primary goal is the GMed activation and strengthening.


2015 ◽  
Vol 24 (1) ◽  
pp. 51-61 ◽  
Author(s):  
Mark A. Sutherlin ◽  
Joseph M. Hart

Context:Individuals with a history of low back pain (LBP) may present with decreased hip-abduction strength and increased trunk or gluteus maximus (GMax) fatigability. However, the effect of hip-abduction exercise on hip-muscle function has not been previously reported.Objective:To compare hip-abduction torque and muscle activation of the hip, thigh, and trunk between individuals with and without a history of LBP during repeated bouts of side-lying hip-abduction exercise.Design:Repeated measures.Setting:Clinical laboratory.Participants:12 individuals with a history of LBP and 12 controls.Intervention:Repeated 30-s hip-abduction contractions.Main Outcome Measures:Hip-abduction torque, normalized root-mean-squared (RMS) muscle activation, percent RMS muscle activation, and forward general linear regression.Results:Hip-abduction torque reduced in all participants as a result of exercise (1.57 ± 0.36 Nm/kg, 1.12 ± 0.36 Nm/kg; P < .001), but there were no group differences (F = 0.129, P = .723) or group-by-time interactions (F = 1.098, P = .358). All participants had increased GMax activation during the first bout of exercise (0.96 ± 1.00, 1.18 ± 1.03; P = .038). Individuals with a history of LBP had significantly greater GMax activation at multiple points during repeated exercise (P < .05) and a significantly lower percent of muscle activation for the GMax (P = .050) at the start of the third bout of exercise and for the biceps femoris (P = .039) at the end of exercise. The gluteal muscles best predicted hip-abduction torque in controls, while no consistent muscles were identified for individuals with a history of LBP.Conclusions:Hip-abduction torque decreased in all individuals after hip-abduction exercise, although individuals with a history of LBP had increased GMax activation during exercise. Gluteal muscle activity explained hip-abduction torque in healthy individuals but not in those with a history of LBP. Alterations in hip-muscle function may exist in individuals with a history of LBP.


Author(s):  
Rodrigo Rabello ◽  
Camila Nodari ◽  
Felipe Scudiero ◽  
Iury Borges ◽  
Luan Fitarelli ◽  
...  

Abstract Purpose Fatigue-induced hip-abductor weakness may exacerbate lower-limb misalignments during different dynamic single-leg tasks. We sought to evaluate the effects of fatigue and task on lower limb kinematics and muscle activation and to find associations between measurements obtained in two tasks. Methods One-group pretest–posttest design. Seventeen healthy adults (9 W) performed the single-leg squat (SLSQUAT) and the single-leg hop (SLHOP) before and after a hip-abduction fatigue protocol. Hip adduction, knee frontal plane projection angle (knee FPPA) and heel inversion displacement were measured during the eccentric phase of the SLSQUAT and the SLHOP, as well as activation of the gluteus medius (GMed), tensor fascia latae (TFL), peroneus longus (PER) and tibialis anterior (TA). Moments and tasks were compared using a repeated-measures two-way ANOVA. Correlation between tasks was evaluated using Spearman’s correlation. Results No differences in kinematics or activation were found between moments. Hip-adduction displacement (P = 0.005), GMed (P = 0.008) and PER (P = 0.037) activation were higher during SLSQUAT, while TA activation was higher during SLHOP (P < 0.001). No differences were found between tasks in knee FPPA and heel inversion. Hip-adduction and knee FPPA were not correlated between tasks, while ankle inversion displacement was positively correlated (rs = 0.524–0.746). Conclusion Different characteristics of SLSQUAT (slower and deeper) seem to have led to increased hip adduction displacement, GMed, and PER activation and decreased TA activation, likely due to higher balance requirements. However, hip-abductor fatigue didn’t influence lower-limb alignment during the tasks. Finally, evaluations should be performed with different single-leg tasks since they don’t give the same lower-limb alignment information.


2020 ◽  
Vol 29 (7) ◽  
pp. 963-969 ◽  
Author(s):  
Chi-Whan Choi ◽  
Jung-Wan Koo ◽  
Yeon-Gyu Jeong

Context: The modified side-bridge exercise is designed for some special situations in which it is impossible to tolerate the compressive load on the side supported during the side bridge, such as in the older people with a hip or knee replacement and even in athletes with shoulder pain. Objectives: To examine the effects of 3 modified side-bridge exercises on the spinal stability muscles compared with traditional side-bridge (TSB) exercises for healthy men. Design: The effects of different exercises on the muscle activities of the external oblique (EO), internal oblique (IO), and quadratus lumborum (QL) during TSB exercise, both legs lift on side lying (BLLS), torso lift on a 45° bench while side lying (TLBS), and wall side bridge (WSB) were analyzed with the 1-way repeated-measures analysis of variance. Setting: This study was conducted in a university hospital laboratory. Participants: A total of 20 healthy men were recruited for this study. Interventions: The participants performed TSB, BLLS, TLBS, and WSB in a random order. Main Outcome Measures: Surface electromyography measured the muscle activity of the EO, IO, and QL. A 1-way repeated-measures analysis of variance assessed the statistical significance of the EO, IO, and QL muscle activity. When there was a significant difference, a Bonferroni adjustment was performed. Results: BLLS and TLBS showed similar effects to TSB in the EO, IO, and QL muscle activity, whereas WSB showed significantly less QL muscle activity than TSB (P < .05). Moreover, TLBS was significantly greater in the muscle activity of QL and EO than WSB (P < .05). Conclusion: BLLS and TLBS may be effective rehabilitation techniques to activate EO, IO, and QL in patients who are unable to perform TSB as spine stability exercises.


2011 ◽  
Vol 20 (3) ◽  
pp. 287-295 ◽  
Author(s):  
Justin M. Stanek ◽  
Todd A. McLoda ◽  
Val J. Csiszer ◽  
A.J. Hansen

Context:Selected muscles in the kinetic chain may help explain the body’s ability to avert injury during unexpected perturbation.Objective:To determine the activation of the ipsilateral rectus femoris (RF), gluteus maximus (MA), gluteus medius (ME), and contralateral external obliques (EO) during normal and perturbed gait.Design:Single-factor, repeated measures.Setting:University research laboratory.Participants:32 physically active, college-age subjects.Intervention:Subjects walked a total of 20 trials the length of a 6.1-m custom runway capable of releasing either side into 30° of unexpected inversion. During 5 trials, the platform released into inversion.Main Outcome Measures:Average, peak, and time to peak EMG were analyzed across the 4 muscles, and comparisons were made between the walking trials and perturbed trials.Results:Significantly higher average and peak muscle activity were noted for the perturbed condition for RF, MA, and EO. Time to peak muscle activity was faster during the perturbed condition for the EO.Conclusion:Rapid contractions of selected postural muscles in the kinetic chain help explain the body’s reaction to unexpected perturbation.


2014 ◽  
Vol 23 (1) ◽  
pp. 1-11 ◽  
Author(s):  
James W. Youdas ◽  
Kady E. Adams ◽  
John E. Bertucci ◽  
Koel J. Brooks ◽  
Meghan M. Nelson ◽  
...  

Context:No published studies have compared muscle activation levels simultaneously for the gluteus maximus and medius muscles of stance and moving limbs during standing hip-joint strengthening while using elastic-tubing resistance.Objective:To quantify activation levels bilaterally of the gluteus maximus and medius during resisted lower-extremity standing exercises using elastic tubing for the cross-over, reverse cross-over, front-pull, and back-pull exercise conditions.Design:Repeated measures.Setting:Laboratory.Participants:26 active and healthy people, 13 men (25 ± 3 y) and 13 women (24 ± 1 y).Intervention:Subjects completed 3 consecutive repetitions of lower-extremity exercises in random order.Main Outcome Measures:Surface electromyographic (EMG) signals were normalized to peak activity in the maximum voluntary isometric contraction (MVIC) trial and expressed as a percentage. Magnitudes of EMG recruitment were analyzed with a 2 × 4 repeated-measures ANOVA for each muscle (α = .05).Results:For the gluteus maximus an interaction between exercise and limb factor was significant (F3,75 = 21.5; P < .001). The moving-limb gluteus maximus was activated more than the stance limb's during the back-pull exercise (P < .001), and moving-limb gluteus maximus muscle recruitment was greater for the back-pull exercise than for the cross-over, reverse cross-over, and front-pull exercises (P < .001). For the gluteus medius an interaction between exercise and limb factor was significant (F3,75 = 3.7; P < .03). Gluteus medius muscle recruitment (% MVIC) was greater in the stance limb than moving limb when performing the front-pull exercise (P < .001). Moving-limb gluteus medius muscle recruitment was greater for the reverse cross-over exercise than for the cross-over, front-pull, and back-pull exercises (P < .001).Conclusions:From a clinical standpoint there is no therapeutic benefit to selectively activate the gluteus maximus and gluteus medius muscles on the stance limb by resisting sagittal- and frontal-plane hip movements on the moving limb using resistance supplied by elastic tubing.


Author(s):  
Harish Chander ◽  
John C. Garner ◽  
Chip Wade ◽  
Adam C. Knight

Muscle activity from the slipping leg have been previously used to analyze slip induced falls. However, the impact of casual alternative footwear on slipping leg muscle activity when exposed to slippery environments is still unknown. The purpose of the study was to analyze the impact of alternative footwear (crocs (CC) and flip-flops (FF)) compared to slip-resistant footwear (LT) on lower extremity muscle activity when exposed to dry gait (NG), unexpected (US), alert (AS), and expected slips (ES). Eighteen healthy males (age: 22.3 ± 2.2 years; height: 177.7 ± 6.9 cm; weight: 79.3 ± 7.6 kg) completed the study in a repeated measures design in three footwear sessions separated by 48 h. Electromyography (EMG) muscle activity from four muscles of the lead/slipping leg was measured during the stance phase of the gait-slip trials. A 3 (footwear) × 4 (gait-slip trials) repeated measures analysis of variance was used to analyze EMG dependent variables mean, peak, and percent of maximal voluntary contraction. Greater lower extremity muscle activation during the stance phase was seen in US and AS conditions compared to NG and ES. In addition, footwear differences were seen for the alternative footwear (CC and FF) during US and AS, while the low top slip resistant shoe had no differences across all gait trials, suggesting it as the most efficient footwear of choice, especially when maneuvering slippery flooring conditions, either with or without the knowledge of an impending slip.


2011 ◽  
Vol 20 (2) ◽  
pp. 174-186 ◽  
Author(s):  
Catriona O’Dwyer ◽  
David Sainsbury ◽  
Kieran O’Sullivan

Context:Functional subdivisions are proposed to exist in the gluteus medius (GM) muscle. Dysfunction of the GM, in particular its functional subdivisions, is commonly implicated in lower limb pathologies. However, there is a lack of empirical evidence examining the role of the subdivisions of the GM.Objectives:To compare the activation of the functional subdivisions of the GM (anterior, middle, and posterior) during isometric hip contractions.Design:Single-session, repeated-measures observational study.Setting:University research laboratory.Participants:Convenience sample of 15 healthy, pain-free subjects.Intervention:Subjects performed 3 maximal voluntary isometric contractions for hip abduction and internal and external rotation on an isokinetic dynamometer with simultaneous recording of surface electromyography (sEMG) activity of the GM subdivisions.Main Outcome Measures:sEMG muscle activity for each functional subdivision of the GM during each hip movement was analyzed using a 1-way repeated-measures ANOVA (post hoc Bonferroni).Results:The response of GM subdivisions during the 3 different isometric contractions was significantly different (interaction effect; P = .003). The anterior GM displayed significantly higher activation across all 3 isometric contractions than the middle and posterior subdivisions (main effect; both P < .001). The middle GM also demonstrated significantly higher activation than the posterior GM across all 3 isometric contractions (main effect; P = .027). There was also significantly higher activation of all 3 subdivisions during both abduction and internal rotation than during external rotation (main effect; both P < .001).Conclusions:The existence of functional subdivisions in the GM appears to be supported by the findings. Muscle activation was not homogeneous throughout the entire muscle. The highest GM activation was found in the anterior GM subdivision and during abduction and internal rotation. Future studies should examine the role of GM functional subdivisions in subjects with lower limb pathologies.


Sign in / Sign up

Export Citation Format

Share Document