Muscle Activation Levels of the Gluteus Maximus and Medius During Standing Hip-Joint-Strengthening Exercises Using Elastic-Tubing Resistance

2014 ◽  
Vol 23 (1) ◽  
pp. 1-11 ◽  
Author(s):  
James W. Youdas ◽  
Kady E. Adams ◽  
John E. Bertucci ◽  
Koel J. Brooks ◽  
Meghan M. Nelson ◽  
...  

Context:No published studies have compared muscle activation levels simultaneously for the gluteus maximus and medius muscles of stance and moving limbs during standing hip-joint strengthening while using elastic-tubing resistance.Objective:To quantify activation levels bilaterally of the gluteus maximus and medius during resisted lower-extremity standing exercises using elastic tubing for the cross-over, reverse cross-over, front-pull, and back-pull exercise conditions.Design:Repeated measures.Setting:Laboratory.Participants:26 active and healthy people, 13 men (25 ± 3 y) and 13 women (24 ± 1 y).Intervention:Subjects completed 3 consecutive repetitions of lower-extremity exercises in random order.Main Outcome Measures:Surface electromyographic (EMG) signals were normalized to peak activity in the maximum voluntary isometric contraction (MVIC) trial and expressed as a percentage. Magnitudes of EMG recruitment were analyzed with a 2 × 4 repeated-measures ANOVA for each muscle (α = .05).Results:For the gluteus maximus an interaction between exercise and limb factor was significant (F3,75 = 21.5; P < .001). The moving-limb gluteus maximus was activated more than the stance limb's during the back-pull exercise (P < .001), and moving-limb gluteus maximus muscle recruitment was greater for the back-pull exercise than for the cross-over, reverse cross-over, and front-pull exercises (P < .001). For the gluteus medius an interaction between exercise and limb factor was significant (F3,75 = 3.7; P < .03). Gluteus medius muscle recruitment (% MVIC) was greater in the stance limb than moving limb when performing the front-pull exercise (P < .001). Moving-limb gluteus medius muscle recruitment was greater for the reverse cross-over exercise than for the cross-over, front-pull, and back-pull exercises (P < .001).Conclusions:From a clinical standpoint there is no therapeutic benefit to selectively activate the gluteus maximus and gluteus medius muscles on the stance limb by resisting sagittal- and frontal-plane hip movements on the moving limb using resistance supplied by elastic tubing.

2014 ◽  
Vol 29 (6) ◽  
pp. 857-860
Author(s):  
Toshiaki SEKO ◽  
Tsuneo KUMAMOTO ◽  
Yui TAKAHASHI ◽  
Ryousuke KANEKO ◽  
Masashi TANAKA ◽  
...  

2009 ◽  
Vol 18 (1) ◽  
pp. 91-103 ◽  
Author(s):  
Samantha N. Boudreau ◽  
Maureen K. Dwyer ◽  
Carl G. Mattacola ◽  
Christian Lattermann ◽  
Tim L. Uhl ◽  
...  

Context:Functional exercises are often used in strengthening programs after lower extremity injury. Activation levels of the stabilizing hip muscles have not been documented.Objective:To document the progression of hip-muscle activation levels during 3 lower extremity functional exercises.Design:Cross-sectional.Setting:Laboratory.Participants:44 healthy individuals, 22 women and 22 men.Intervention:Subjects, in 1 testing session, completed 3 trials each of the lunge (LUN), single-leg squat (SLSQ), and step-up-and-over (SUO) exercise.Main Outcome Measures:Root-mean-square muscle amplitude (% reference voluntary muscle contraction) was measured for 5 muscles during the 3 exercises: rectus femoris (RF), dominant and nondominant gluteus medius (GMed_D and GMed_ND), adductor longus (ADD), and gluteus maximus (GMX).Results:The RF, GMAX, and GMed_D were activated in a progression from least to greatest during the SUO, LUN, and SLSQ. The progression for the GMed_ND activation was from least to greatest during the SLSQ, SUO, and then LUN. Activation levels of the ADD showed no progression.Conclusion:Progressive activation levels were documented for muscles acting on the hip joint during 3 functional lower extremity exercises. The authors recommend using this exercise progression when targeting the hip muscles during lower extremity strengthening.


2011 ◽  
Vol 46 (3) ◽  
pp. 246-256 ◽  
Author(s):  
Anh-Dung Nguyen ◽  
Sandra J. Shultz ◽  
Randy J. Schmitz ◽  
Richard M. Luecht ◽  
David H. Perrin

Context: Multiple factors have been suggested to increase the risk of faulty dynamic alignments that predict noncontact anterior cruciate ligament injury. Few researchers have examined this relationship using an integrated, multifactorial approach. Objective: To describe the relationship among static lower extremity alignment (LEA), hip muscle activation, and hip and knee motion during a single-leg squat. Design: Descriptive laboratory study. Setting: Research laboratory. Patients or Other Participants: Thirty men (age = 23.9 ± 3.6 years, height = 178.5 ± 9.9 cm, mass = 82.0 ± 14.1 kg) and 30 women (age = 22.2 ± 2.6 years, height = 162.4 ± 6.3 cm, mass = 60.3 ± 8.1 kg). Main Outcome Measure(s): Pelvic angle, femoral anteversion, quadriceps angle, tibiofemoral angle, and genu recurvatum were measured to the nearest degree; navicular drop was measured to the nearest millimeter. The average root mean square amplitude of the gluteus medius and maximus muscles was assessed during the single-leg squat and normalized to the peak root mean square value during maximal contractions for each muscle. Kinematic data of hip and knee were also assessed during the single-leg squat. Structural equation modeling was used to describe the relationships among static LEA, hip muscle activation, and joint kinematics, while also accounting for an individual's sex and hip strength. Results: Smaller pelvic angle and greater femoral anteversion, tibiofemoral angle, and navicular drop predicted greater hip internal-rotation excursion and knee external-rotation excursion. Decreased gluteus maximus activation predicted greater hip internal-rotation excursion but decreased knee valgus excursion. No LEA characteristic predicted gluteus medius or gluteus maximus muscle activation during the single-leg squat. Conclusions: Static LEA, characterized by a more internally rotated hip and valgus knee alignment and less gluteus maximus activation, was related to commonly observed components of functional valgus collapse during the single-leg squat. This exploratory analysis suggests that LEA does not influence hip muscle activation in controlling joint motion during a single-leg squat.


2011 ◽  
Vol 20 (3) ◽  
pp. 287-295 ◽  
Author(s):  
Justin M. Stanek ◽  
Todd A. McLoda ◽  
Val J. Csiszer ◽  
A.J. Hansen

Context:Selected muscles in the kinetic chain may help explain the body’s ability to avert injury during unexpected perturbation.Objective:To determine the activation of the ipsilateral rectus femoris (RF), gluteus maximus (MA), gluteus medius (ME), and contralateral external obliques (EO) during normal and perturbed gait.Design:Single-factor, repeated measures.Setting:University research laboratory.Participants:32 physically active, college-age subjects.Intervention:Subjects walked a total of 20 trials the length of a 6.1-m custom runway capable of releasing either side into 30° of unexpected inversion. During 5 trials, the platform released into inversion.Main Outcome Measures:Average, peak, and time to peak EMG were analyzed across the 4 muscles, and comparisons were made between the walking trials and perturbed trials.Results:Significantly higher average and peak muscle activity were noted for the perturbed condition for RF, MA, and EO. Time to peak muscle activity was faster during the perturbed condition for the EO.Conclusion:Rapid contractions of selected postural muscles in the kinetic chain help explain the body’s reaction to unexpected perturbation.


2011 ◽  
Vol 20 (2) ◽  
pp. 174-186 ◽  
Author(s):  
Catriona O’Dwyer ◽  
David Sainsbury ◽  
Kieran O’Sullivan

Context:Functional subdivisions are proposed to exist in the gluteus medius (GM) muscle. Dysfunction of the GM, in particular its functional subdivisions, is commonly implicated in lower limb pathologies. However, there is a lack of empirical evidence examining the role of the subdivisions of the GM.Objectives:To compare the activation of the functional subdivisions of the GM (anterior, middle, and posterior) during isometric hip contractions.Design:Single-session, repeated-measures observational study.Setting:University research laboratory.Participants:Convenience sample of 15 healthy, pain-free subjects.Intervention:Subjects performed 3 maximal voluntary isometric contractions for hip abduction and internal and external rotation on an isokinetic dynamometer with simultaneous recording of surface electromyography (sEMG) activity of the GM subdivisions.Main Outcome Measures:sEMG muscle activity for each functional subdivision of the GM during each hip movement was analyzed using a 1-way repeated-measures ANOVA (post hoc Bonferroni).Results:The response of GM subdivisions during the 3 different isometric contractions was significantly different (interaction effect; P = .003). The anterior GM displayed significantly higher activation across all 3 isometric contractions than the middle and posterior subdivisions (main effect; both P < .001). The middle GM also demonstrated significantly higher activation than the posterior GM across all 3 isometric contractions (main effect; P = .027). There was also significantly higher activation of all 3 subdivisions during both abduction and internal rotation than during external rotation (main effect; both P < .001).Conclusions:The existence of functional subdivisions in the GM appears to be supported by the findings. Muscle activation was not homogeneous throughout the entire muscle. The highest GM activation was found in the anterior GM subdivision and during abduction and internal rotation. Future studies should examine the role of GM functional subdivisions in subjects with lower limb pathologies.


2013 ◽  
Vol 22 (4) ◽  
pp. 301-307 ◽  
Author(s):  
Ji-hyun Lee ◽  
Heon-seock Cynn ◽  
Sil-ah Choi ◽  
Tae-lim Yoon ◽  
Hyo-jung Jeong

Context:Gluteus medius (Gmed) weakness is associated with some lower-extremity injuries. People with Gmed weakness might compensate by activating the tensor fasciae latae (TFL). Different hip rotations in the transverse plane may affect Gmed and TFL muscle activity during isometric side-lying hip abduction (SHA).Objectives:To compare Gmed and TFL muscle activity and the Gmed:TFL muscle-activity ratio during SHA exercise with 3 different hip rotations.Design:The effects of different hip rotations on Gmed, TFL, and the Gmed:TFL muscle-activity ratio during isometric SHA were analyzed with 1-way, repeated-measures analysis of variance.Setting:University research laboratory.Participants:20 healthy university students were recruited in this study.Interventions:Participants performed isometric SHA: frontal SHA with neutral hip (frontal SHAN), frontal SHA with hip medial rotation (frontal SHA-MR), and frontal SHA with hip lateral rotation (frontal SHA-LR).Main Outcome Measures:Surface electromyography measured the activity of the Gmed and the TFL. A 1-way repeated-measures analysis of variance assessed the statistical significance of Gmed and TFL muscle activity. When there was a significant difference, a Bonferroni adjustment was performed.Results:Frontal SHA-MR showed significantly greater Gmed muscle activation than frontal SHA-N (P = .000) or frontal SHA-LR (P = .015). Frontal SHA-LR showed significantly greater TFL muscle activation than frontal SHA-N (P = .002). Frontal SHA-MR also resulted in a significantly greater Gmed:TFL muscle-activity ratio than frontal SHA-N (P = .004) or frontal SHA-LR (P = .000), and frontal SHA-N was significantly greater than frontal SHA-LR (P = .000).Conclusions:Frontal SHA-MR results in greater Gmed muscle activation and a higher Gmed:TFL muscle ratio.


2017 ◽  
Vol 26 (1) ◽  
pp. 78-93 ◽  
Author(s):  
Jihong Park ◽  
W. Matt Denning ◽  
Jordan D. Pitt ◽  
Devin Francom ◽  
J. Ty Hopkins ◽  
...  

Context:Although knee pain is common, some facets of this pain are unclear. The independent effects (ie, independent from other knee injury or pathology) of knee pain on neural activation of lower-extremity muscles during landing and jumping have not been observed.Objective:To investigate the independent effects of knee pain on lower-extremity muscle (gastrocnemius, vastus medialis, medial hamstrings, gluteus medius, and gluteus maximus) activation amplitude during landing and jumping, performed at 2 different intensities.Design:Laboratory-based, pretest, posttest, repeated-measures design, where all subjects performed both data-collection sessions.Methods:Thirteen able-bodied subjects performed 2 different land and jump tasks (forward and lateral) under 2 different conditions (control and pain), at 2 different intensities (high and low). For the pain condition, experimental knee pain was induced via a hypertonic saline injection into the right infrapatellar fat pad. Functional linear models were used to evaluate the influence of experimental knee pain on muscle-activation amplitude throughout the 2 land and jump tasks.Results:Experimental knee pain independently altered activation for all of the observed muscles during various parts of the 2 different land and jump tasks. These activation alterations were not consistently influenced by task intensity.Conclusion:Experimental knee pain alters activation amplitude of various lower-extremity muscles during landing and jumping. The nature of the alteration varies between muscles, intensities, and phases of the movement (ie, landing and jumping). Generally, experimental knee pain inhibits the gastrocnemius, medial hamstring, and gluteus medius during landing while independently increasing activation of the same muscles during jumping.


2020 ◽  
pp. 1-6
Author(s):  
John H. Hollman ◽  
Nicholas J. Beise ◽  
Michelle L. Fischer ◽  
Taylor L. Stecklein

Context: Examining the coordinated coupling of muscle recruitment patterns may provide insight into movement variability in sport-related tasks. Objective: The purpose of this study was to examine the relationship between coupled gluteus maximus and medius recruitment patterns and hip-adduction variability during single-limb step-downs. Design: Cross-sectional. Setting: Biomechanics laboratory. Participants: Forty healthy adults, including 26 women and 14 men, mean age 23.8 (1.6) years, mean body mass index 24.2 (3.1) kg/m2, participated. Interventions: Lower-extremity kinematics were acquired during 20 single-limb step-downs from a 19-cm step height. Electromyography (EMG) signals were captured with surface electrodes. Isometric hip-extension strength was obtained. Main Outcome Measures: Hip-adduction variability, measured as the SD of peak hip adduction across 20 repetitions of the step-down task, was measured. The mean amplitudes of gluteus maximus and gluteus medius EMG recruitment were examined. Determinism and entropy of the coupled EMG signals were computed with cross-recurrence quantification analyses. Results: Hip-adduction variability correlated inversely with determinism (r = −.453, P = .018) and positively with entropy (r = .409, P = .034) in coupled gluteus maximus/medius recruitment patterns but not with hip-extensor strength nor with magnitudes of mean gluteus maximus or medius recruitment (r = −.003, .081, and .035; P = .990, .688, and .864, respectively). Conclusion: Hip-adduction variability during single-limb step-downs correlated more strongly with measures of coupled gluteus maximus and medius recruitment patterns than with hip-extensor strength or magnitudes of muscle recruitment. Examining coupled recruitment patterns may provide an alternative understanding of the extent to which hip neuromuscular control modulates lower-extremity kinematics beyond examining muscle strength or EMG recruitment magnitudes.


2009 ◽  
Vol 89 (11) ◽  
pp. 1205-1214 ◽  
Author(s):  
Vicki Stemmons Mercer ◽  
Michael T. Gross ◽  
Subhashini Sharma ◽  
Erin Weeks

Background Step-up exercises often are suggested for strengthening the hip abductor muscles and improving balance in older adults. Little is known, however, about whether the forward or lateral version of these exercises is best for activating the hip abductor muscles. Objective The purpose of this study was to examine the electromyographic (EMG) amplitude of the gluteus medius (GM) muscles bilaterally during forward and lateral step-up exercises. Design The study design involved single-occasion repeated measures. Methods Twenty-seven community-dwelling adults (7 men and 20 women) with a mean (SD) age of 79.4 (8.0) years performed forward and lateral step-up exercises while the surface EMG activity of the GM muscles was recorded bilaterally. Pressure switches and dual forceplates were used to identify the ascent and descent phases. Subjects were instructed to lead with the right lower extremity during ascent and the left lower extremity during descent. Differences in normalized root-mean-square EMG amplitudes with exercise direction (forward versus lateral) and phase (ascent versus descent) were examined by use of separate repeated-measures analyses of variance for the right and left lower extremities. The alpha level was set at .05. Results Gluteus medius muscle EMG activity was significantly greater for lateral than for forward step-up exercises for the left lower extremity during the ascent phase and for both lower extremities during the descent phase. In addition, right GM muscle EMG activity was significantly greater during ascent than during descent for both exercise directions. Limitations Study limitations include use of a convenience sample and collection of limited information about participants. Conclusions Step-up exercises are effective in activating the GM muscle, with lateral step-up exercises requiring greater GM muscle activation than forward step-up exercises. Further study is needed to determine whether exercise programs for hip abductor muscle strengthening in older adults should preferentially include lateral over forward step-up exercises.


2012 ◽  
Vol 21 (2) ◽  
pp. 110-118 ◽  
Author(s):  
Kieran O’Sullivan ◽  
Ellen Herbert ◽  
David Sainsbury ◽  
Karen McCreesh ◽  
Amanda Clifford

Context:The gluteus medius (Gmed) is proposed to consist of 3 functional subdivisions (anterior, middle, and posterior). Gmed weakness and dysfunction have been implicated in numerous lower extremity disorders, including patellofemoral pain syndrome (PFPS). PFPS is a knee condition that frequently occurs in females and is associated with activities such as squatting and stair climbing. There is a lack of evidence for the role of the subdivisions of the Gmed in females with and without PFPS.Objective:To compare muscle activation in the 3 Gmed subdivisions during 4 weight-bearing exercises in women with and without PFPS.Design:Single-session, repeated-measures observational study.Setting:University research laboratory.Participants:Convenience sample of 12 women with PFPS and 12 age- and gender-matched asymptomatic controls.Intervention:Participants performed 4 weight-bearing exercises (wall press, pelvic drop, step-up-and-over, and unilateral squat) 3 times while surface electromyography (sEMG) activity of the Gmed segments was recorded.Main Outcome Measures:sEMG muscle activity for each functional subdivision of the Gmed during each weight-bearing exercise was analyzed using a mixed between–within-subjects ANOVA (post hoc Bonferroni).Results:No statistically significant differences in muscle activation were found between the PFPS and healthy participants (P = .97). Furthermore, there were no statistically significant differences between the exercises (P = .19) or muscle fibers (P = .36) independent of group analyzed. However, the activation of the subdivisions varied according to the exercise performed (P = .003).Conclusions:Similar levels of muscle activation were recorded in the Gmed subdivisions of the PFPS and healthy participants during the different exercises. This is the first study to examine all 3 Gmed subdivisions in PFPS. Future studies using larger sample sizes should also investigate onset and duration of muscle activation in all Gmed subdivisions in both healthy individuals and those with PFPS.


Sign in / Sign up

Export Citation Format

Share Document