Temporal and Force Characteristics of Rapid Single-Finger Tapping in Healthy Older Adults

Motor Control ◽  
2019 ◽  
Vol 23 (4) ◽  
pp. 518-534
Author(s):  
Tomoko Aoki ◽  
Hayato Tsuda ◽  
Hiroshi Kinoshita

The purpose of this study was to examine finger motor function in terms of temporal and force characteristics during rapid single-finger tapping in older adults. Ten older and 10 young males performed maximum frequency tapping by the index, middle, ring, or little finger. Nontapping fingers were maintained in contact with designated keys during tasks. Key-contact force for each of the fingers was monitored using four force transducers. The older subjects had slower tapping rates of all fingers during single-finger tapping than the young subjects. The average forces exerted by the nontapping fingers were larger for the older subjects than for the young subjects during tapping with the ring and little fingers. The ranges of the nontapping finger forces were larger for the older subjects during tapping by the middle, ring, and little fingers than for the young subjects. Thus, the motor abilities of the fingers evaluated by rapid single-finger tapping decline in older adults compared with young adults in terms of both movement speed and finger independence.

Motor Control ◽  
2021 ◽  
Vol 25 (2) ◽  
pp. 283-294
Author(s):  
Tomoko Aoki ◽  
Koji Kadota

The present study examined the effects of daily activities of the hands on finger motor function in older adults. Maximum tapping frequency with each finger during single-finger tapping and alternate movements of index–middle, middle–ring, and ring–little finger pairs during double-finger tapping were compared between older adults who used their hands actively in their daily lives and those who did not. The active participants had significantly faster tapping rates for the ring finger in the single-finger tapping and the middle–ring finger pair in the double-finger tapping than did the inactive participants. Thus, daily activity of the hands in older adults could be effective at preventing the loss of dynamic motor function in individual fingers, especially with greater difficulty in movement, resulting from the degeneration with age.


2020 ◽  
Author(s):  
Hannah J. Block ◽  
Brandon M. Sexton

AbstractTo control hand movement, we have both vision and proprioception, or position sense. The brain is known to integrate these to reduce variance. Here we ask whether older adults integrate vision and proprioception in a way that minimizes variance as young adults do, and whether older subjects compensate for an imposed visuo-proprioceptive mismatch as young adults do. Ten healthy older adults (mean age 69) and 10 healthy younger adults (mean age 19) participated. Subjects were asked to estimate the position of visual, proprioceptive, and combined targets, with no direct vision of either hand. After a veridical baseline block, a spatial visuo-proprioceptive misalignment was gradually imposed by shifting the visual component forward from the proprioceptive component without the subject’s awareness. Older subjects were more variable than young subjects at estimating both visual and proprioceptive target positions (F1,18 = 6.14, p = 0.023). Older subjects tended to rely more heavily on vision than proprioception compared to younger subjects. However, the weighting of vision vs. proprioception was correlated with minimum variance predictions for both older (r = 0.71, p = 0.021) and younger (r = 0.81, p = 0.0047) adults, suggesting that variance-minimizing mechanisms are present to some degree in older adults. Visual and proprioceptive realignment were similar for young and older subjects in the misalignment block, suggesting older subjects are able to realign as much as young subjects. These results suggest that intact multisensory processing in older adults should be explored as a potential means of mitigating degradation in individual sensory systems.


2020 ◽  
Vol 34 (1) ◽  
pp. 93-111
Author(s):  
Hannah J. Block ◽  
Brandon M. Sexton

Abstract To control hand movement, we have both vision and proprioception, or position sense. The brain is known to integrate these to reduce variance. Here we ask whether older adults integrate vision and proprioception in a way that minimizes variance as young adults do, and whether older subjects compensate for an imposed visuo-proprioceptive mismatch as young adults do. Ten healthy older adults (mean age 69) and 10 healthy younger adults (mean age 19) participated. Subjects were asked to estimate the position of visual, proprioceptive, and combined targets, with no direct vision of either hand. After a veridical baseline block, a spatial visuo-proprioceptive misalignment was gradually imposed by shifting the visual component forward from the proprioceptive component without the subject’s awareness. Older subjects were more variable than young subjects at estimating both visual and proprioceptive target positions. Older subjects tended to rely more heavily on vision than proprioception compared to younger subjects. However, the weighting of vision vs. proprioception was correlated with minimum variance predictions for both older and younger adults, suggesting that variance-minimizing mechanisms are present to some degree in older adults. Visual and proprioceptive realignment were similar for young and older subjects in the misalignment block, suggesting older subjects are able to realign as much as young subjects. These results suggest that intact multisensory processing in older adults should be explored as a potential means of mitigating degradation in individual sensory systems.


Medicina ◽  
2013 ◽  
Vol 49 (1) ◽  
pp. 4 ◽  
Author(s):  
Tomas Darbutas ◽  
Vilma Juodžbalienė ◽  
Albertas Skurvydas ◽  
Aleksandras Kriščiūnas

The aim of this study was to determine the differences in reaction time, reaction complexity, and movement speed depending on age. Material and Methods. The study included 40 healthy subjects (20 young and 20 older women and men). The study was conducted at the Human Motorics Laboratory, Lithuanian Sports University. An analyzer DPA-1 of dynamic upper and lower limb movements was used for the research purposes. Results. The reaction time of the right arm of the young subjects was 0.26 s (SD, 0.01) and that of the left arm was 0.25 s (SD, 0.02), when an accuracy task was performed. The reaction time of the older subjects was 0.29 s (SD, 0.03) and 0.28 s (SD, 0.03) for the right and left arms, respectively. The reaction time of the right leg of the young subjects was 0.26 s (SD, 0.02) and that of the left leg was 0.27 s (SD, 0.03). The reaction time of the right and left legs of the older subjects was 0.33 s (SD, 0.02) and 0.35 s (SD, 0.04), respectively. The reaction of the young subjects was almost two times faster compared with the older persons after the accuracy task with each limb was accomplished. Conclusions. In case of movements with arms and legs, reaction time and movement speed directly depend on the complexity of a task. Reaction time and movement speed are slower for the older subjects in comparison with the young ones; the results worsen in proportion to the increasing complexity of a task.


2004 ◽  
Vol 97 (3) ◽  
pp. 998-1005 ◽  
Author(s):  
Darren S. DeLorey ◽  
John M. Kowalchuk ◽  
Donald H. Paterson

Pulmonary O2 uptake (V̇o2p) and muscle deoxygenation kinetics were examined during moderate-intensity cycling (80% lactate threshold) without warm-up and after heavy-intensity warm-up exercise in young ( n = 6; 25 ± 3 yr) and older ( n = 5; 68 ± 3 yr) adults. We hypothesized that heavy warm-up would speed V̇o2p kinetics in older adults consequent to an improved intramuscular oxygenation. Subjects performed step transitions ( n = 4; 6 min) from 20 W to moderate-intensity exercise preceded by either no warm-up or heavy-intensity warm-up (6 min). V̇o2p was measured breath by breath. Oxy-, deoxy-(HHb), and total hemoglobin and myoglobin (Hbtot) of the vastus lateralis muscle were measured continuously by near-infrared spectroscopy (NIRS). V̇o2p (phase 2; τ) and HHb data were fit with a monoexponential model. After heavy-intensity warm-up, oxyhemoglobin (older subjects: 13 ± 9 μM; young subjects: 9 ± 8 μM) and Hbtot (older subjects: 12 ± 8 μM; young subjects: 14 ± 10 μM) were elevated ( P < 0.05) relative to the no warm-up pretransition baseline. In older adults, τV̇o2p adapted at a faster rate ( P < 0.05) after heavy warm-up (30 ± 7 s) than no warm-up (38 ± 5 s), whereas in young subjects, τV̇o2p was similar in no warm-up (26 ± 7 s) and heavy warm-up (25 ± 5 s). HHb adapted at a similar rate in older and young adults after no warm-up; however, in older adults after heavy warm-up, the adaptation of HHb was slower ( P < 0.01) compared with young and no warm-up. These data suggest that, in older adults, V̇o2p kinetics may be limited by a slow adaptation of muscle blood flow and O2 delivery.


2003 ◽  
Vol 23 (5) ◽  
pp. 565-573 ◽  
Author(s):  
Axel Riecker ◽  
Wolfgang Grodd ◽  
Uwe Klose ◽  
Jorg B. Schulz ◽  
Klaus Gröschel ◽  
...  

Recent blood oxygenation level–dependent (BOLD) functional magnetic resonance imaging studies have shown a reduction of cerebral activation during aging, which may be associated with age-related changes of the cerebral vascular system. The authors used a global hypercapnic breath-holding challenge to define nonneuronal contributions to a significantly reduced activation in the primary sensorimotor cortex during finger tapping in a group of old (n = 6; mean age 65 years) compared with a group of young (n = 6; mean age 27 years) subjects. Within significantly activated voxels in both groups during finger tapping, the mean BOLD signal amplitudes were significantly smaller in the group of older subjects for both tasks. In those voxels showing significant activation only in young subjects during finger tapping, the response to hypercapnia was also greatly diminished in older subjects. The attenuated hypercapnic BOLD signal response in older subjects within this region suggests that age-dependent changes of the cerebral vasculature may alter the neuronal–vascular coupling. In older subjects, cerebral vessels may not react as effectively in response to a vasodilating stimulus, which will lead to differences in the number of voxels that pass a criterion threshold despite similar neuronal activation.


1992 ◽  
Vol 36 (2) ◽  
pp. 146-150
Author(s):  
Brian P. Cooper ◽  
Mark D. Lee ◽  
Robert E. Goska ◽  
Marjo M. Anderson ◽  
Paul E. Gay ◽  
...  

Two experiments were conducted to investigate the mechanisms which underlie the learning in consistently mapped (CM) memory search. In Experiment 1, old and young adults were trained in both CM and variably mapped (VM) category search. The training results replicate previous findings by Fisk and Rogers (1991). Even though older adults are initially at a disadvantage relative to young adults, the comparison times of young and old adults are near zero after CM training. For VM, older adults remain at a disadvantage relative to younger adults, even after extensive training. A full reversal manipulation was implemented in Experiment 2 to investigate the learning in memory search. Initially, the young subjects were less affected by the full reversal condition compared to the performance of the older adults. However, older subjects quickly recovered and both young and old were performing at trained CM levels within 60 trials of additional practice. These results suggest: (a) attention is not being trained in CM memory search; (b) automatic category activation does not contribute much, if at all, to the performance improvement in memory search; and (c) age-invariant learning mechanisms account for performance improvement in CM memory search.


1992 ◽  
Vol 35 (4) ◽  
pp. 892-902 ◽  
Author(s):  
Robert Allen Fox ◽  
Lida G. Wall ◽  
Jeanne Gokcen

This study examined age-related differences in the use of dynamic acoustic information (in the form of formant transitions) to identify vowel quality in CVCs. Two versions of 61 naturally produced, commonly occurring, monosyllabic English words were created: a control version (the unmodified whole word) and a silent-center version (in which approximately 62% of the medial vowel was replaced by silence). A group of normal-hearing young adults (19–25 years old) and older adults (61–75 years old) identified these tokens. The older subjects were found to be significantly worse than the younger subjects at identifying the medial vowel and the initial and final consonants in the silent-center condition. These results support the hypothesis of an age-related decrement in the ability to process dynamic perceptual cues in the perception of vowel quality.


1999 ◽  
Vol 84 (10) ◽  
pp. 3764-3769
Author(s):  
E. E. Blaak ◽  
M. A. van Baak ◽  
W. H. M. Saris

Abstract The effect of aging on β-adrenergically mediated substrate utilization was investigated in nine young (25.2 ± 1.7 yr old) and eight older males (52.9 ± 2.1 yr old), matched for body weight and body composition. In a first experiment, the nonselectiveβ -agonist isoprenaline (ISO) was infused in increasing standardized doses, and during each infusion period energy expenditure and substrate utilization were determined by indirect calorimetry. In a second experiment, forearm skeletal muscle metabolism was studied during a standardized infusion dose of ISO (19 ng/kg fat-free mass·min). During β-adrenergic stimulation there was an increased carbohydrate oxidation (at an ISO infusion dose of 24 ng/kg fat-free mass·min, 31% vs. 21% of total energy expenditure; P &lt; 0.05) and a decreased fat oxidation (51 vs. 62 of total energy expenditure; P &lt; 0.05) in older compared to young subjects. Skeletal muscle lactate release significantly increased in the older subjects (from −175 ± 32 to −366 ± 66 nmol/100 mL forearm tissue·min), whereas there was no change in young subjects (from− 32 ± 21 to 23 ± 57 nmol/100 mL forearm tissue·min; interaction group × ISO, P &lt; 0.01). Additionally, there was a tendency toward a blunted ISO-induced increase in nonesterified fatty acid uptake in the older subjects (interaction group × ISO, P = 0.062). Thus, middle-aged subjects have a blunted ability to oxidize fat during β-adrenergic stimulation compared to young subjects. This diminished fat oxidation may be an important etiological factor in the age-related increase in body fatness and obesity by favoring fat storage above oxidation.


1999 ◽  
Vol 9 (2) ◽  
pp. 103-109
Author(s):  
Reginald L. Reginella ◽  
Mark S. Redfern ◽  
Joseph M. Furman

Sensory information from lightly touching a reference with the hand is known to influence postural sway in young adults. The primary aim of this study was to compare the influence of finger contact (FC) with an earth-fixed reference to the influence of FC with a body-fixed reference. A second goal of this study was to determine if FC is used differently by older adults compared to younger adults. Using a force plate, center of pressure at the feet was recorded from blindfolded young and older subjects during several conditions. Subjects either did or did not lightly touch a force-sensitive plate that was either earth-fixed or moved forward and backward in synchrony with body sway (that is, sway-referenced). In addition, support surface conditions were also varied, including a fixed floor and a sway-referenced floor using an EquitestTM. Results showed that the type of FC, floor condition, and age each had an effect on postural sway. Touching an earth-fixed plate decreased postural sway as compared to no touching, while touching a sway-referenced plate incresased sway. This influence of FC was enhanced when the floor was sway-referenced. Although older subjects swayed more than young subjects overall, no age-FC interactions occurred, indicating that FC was not utilized differently between the age groups. This study suggests that FC cannot be disregarded as erroneous, especially when proprioceptive information from the legs is distorted. Further, FC is integrated with other sensory information by the postural control system similarly in young and older persons.


Sign in / Sign up

Export Citation Format

Share Document