scholarly journals Enrichment-free High-throughput Liquid Chromatography–Multiple-Reaction Monitoring Quantification of Cytochrome P450 Proteins in Plated Human Hepatocytes Direct from 96-Well Plates Enables Routine Protein Induction Measurements

2020 ◽  
Vol 48 (7) ◽  
pp. 594-602
Author(s):  
John P. Savaryn ◽  
Ning Liu ◽  
Jun Sun ◽  
Junli Ma ◽  
David M. Stresser ◽  
...  
2014 ◽  
Vol 60 (2) ◽  
pp. 353-360 ◽  
Author(s):  
Lynn Carr ◽  
Anne-Laure Gagez ◽  
Marie Essig ◽  
François-Ludovic Sauvage ◽  
Pierre Marquet ◽  
...  

Abstract BACKGROUND Blood concentrations of the calcineurin inhibitors (CNIs) cyclosporine and tacrolimus are currently measured to monitor immunosuppression in transplant patients. The measurement of calcineurin (CN) phosphatase activity has been proposed as a complementary pharmacodynamic approach. However, determining CN activity with current methods is not practical. We developed a new method amenable to routine use. METHODS Using liquid chromatography–multiple reaction monitoring mass spectrometry (LC-MRM-MS), we quantified CN activity by measuring the dephosphorylation of a synthetic phosphopeptide substrate. A stable isotope analog of the product peptide served as internal standard, and a novel inhibitor cocktail minimized dephosphorylation by other major serine/threonine phosphatases. The assay was used to determine CN activity in peripheral blood mononuclear cells (PBMCs) isolated from 20 CNI-treated kidney transplant patients and 9 healthy volunteers. RESULTS Linearity was observed from 0.16 to 2.5 μmol/L of product peptide, with accuracy in the 15% tolerance range. Intraassay and interassay recoveries were 100.6 (9.6) and 100 (7.5), respectively. Michaelis–Menten kinetics for purified CN were Km = 10.7 (1.6) μmol/L, Vmax = 2.8 (0.3) μmol/min · mg, and for Jurkat lysate, Km = 182.2 (118.0) μmol/L, Vmax = 0.013 (0.006) μmol/min · mg. PBMC CN activity was successfully measured in a single tube with an inhibitor cocktail. CONCLUSIONS Because LC-MRM-MS is commonly used in routine clinical dosage of drugs, this CN activity assay could be applied, with parallel blood drug concentration monitoring, to a large panel of patients to reevaluate the validity of PBMC CN activity monitoring.


2017 ◽  
Vol 33 (7) ◽  
pp. 863-867 ◽  
Author(s):  
Maya KAMAO ◽  
Yoshihisa HIROTA ◽  
Yoshitomo SUHARA ◽  
Naoko TSUGAWA ◽  
Kimie NAKAGAWA ◽  
...  

2012 ◽  
Vol 18 (2) ◽  
pp. 199-210 ◽  
Author(s):  
Robert D. Pelletier ◽  
W. George Lai ◽  
Y. Nancy Wong

Induction of the cytochrome P450 (CYP) family of enzymes by coadministered compounds can result in drug-drug interactions, as in the case of the coadministration of rifampicin with many CYP3A substrates, including midazolam. Identification of potential drug-drug interactions due to CYP induction during drug discovery is critical. We present a substrate cocktail method that was applied to assess the induction of CYP1A, CYP2B6, CYP2C9, and CYP3A using a 96-well high-throughput format. Viable cell counts were determined using a high-content screening system to normalize activities. Substrate cocktail incubations demonstrated a similar fold induction for known inducers as compared with discrete probe incubations. The system was further validated by determining the induction potency of rifampicin. The Emax and EC50 values in two separate lots of hepatocytes for CYP3A induction by rifampicin in a 96-well format were similar when discrete probe was compared with the probe cocktail. This system has been demonstrated to be suitable for high-throughput assessments of CYP induction.


Sign in / Sign up

Export Citation Format

Share Document