scholarly journals Inhibition of Lipopolysaccharide-Stimulated Chronic Obstructive Pulmonary Disease Macrophage Inflammatory Gene Expression by Dexamethasone and the p38 Mitogen-Activated Protein Kinase Inhibitor N-cyano-N′-(2-{[8-(2,6-difluorophenyl)-4-(4-fluoro-2-methylphenyl)-7-oxo-7,8-dihydropyrido[2,3-d] pyrimidin-2-yl]amino}ethyl)guanidine (SB706504)

2008 ◽  
Vol 328 (2) ◽  
pp. 458-468 ◽  
Author(s):  
Lauren M. Kent ◽  
Lucy J. C. Smyth ◽  
Jonathan Plumb ◽  
Chris L. Clayton ◽  
Steve M. Fox ◽  
...  
2018 ◽  
Vol 93 (2) ◽  
Author(s):  
Grace C. A. Manley ◽  
Clare A. Stokes ◽  
Elizabeth K. Marsh ◽  
Ian Sabroe ◽  
Lisa C. Parker

ABSTRACTRhinoviral infection is a common trigger of the excessive inflammation observed during exacerbations of asthma and chronic obstructive pulmonary disease. Rhinovirus (RV) recognition by pattern recognition receptors activates the mitogen-activated protein kinase (MAPK) pathways, which are common inducers of inflammatory gene production. A family of dual-specificity phosphatases (DUSPs) can regulate MAPK function, but their roles in rhinoviral infection are not known. We hypothesized that DUSPs would negatively regulate the inflammatory response to RV infection. Our results revealed that the p38 and c-Jun N-terminal kinase (JNK) MAPKs play key roles in the inflammatory response of epithelial cells to RV infection. Three DUSPs previously shown to have roles in innate immunity (DUSPs 1, 4, and 10) were expressed in primary bronchial epithelial cells, and one of them, DUSP10, was downregulated by RV infection. Small interfering RNA-mediated knockdown of DUSP10 identified a role for the protein in negatively regulating inflammatory cytokine production in response to interleukin-1β (IL-1β), alone and in combination with RV, without any effect on RV replication. This study identifies DUSP10 as an important regulator of airway inflammation in respiratory viral infection.IMPORTANCERhinoviruses are one of the causes of the common cold. In patients with asthma or chronic obstructive pulmonary disease, viral infections, including those with rhinovirus, are the commonest cause of exacerbations. Novel therapeutics to limit viral inflammation are clearly required. The work presented here identifies DUSP10 as an important protein involved in limiting the inflammatory response in the airway without affecting immune control of the virus.


2001 ◽  
Vol 281 (6) ◽  
pp. G1405-G1412 ◽  
Author(s):  
T. Suzuki ◽  
E. Grand ◽  
C. Bowman ◽  
J. L. Merchant ◽  
A. Todisco ◽  
...  

Helicobacter pyloriand proinflammatory cytokines have a direct stimulatory effect on gastrin release from isolated G cells, but little is known about the mechanism by which these factors regulate gastrin gene expression. We explored whether tumor necrosis factor (TNF)-α and interleukin (IL)-1 directly regulate gastrin gene expression and, if so, by what mechanism. TNF-α and IL-1 significantly increased gastrin mRNA in canine G cells to 181 ± 18% and 187 ± 28% of control, respectively, after 24 h of treatment. TNF-α and IL-1 stimulated gastrin promoter activity to a maximal level of 285 ± 12% and 415 ± 26% of control. PD-98059 (a mitogen-activated protein kinase kinase inhibitor), SB-202190 (a p38 kinase inhibitor), and GF-109203 (a protein kinase C inhibitor) inhibited the stimulatory action of both cytokines on the gastrin promoter. In conclusion, both cytokines can directly regulate gastrin gene expression via a mitogen-activated protein kinase- and protein kinase C-dependent mechanism. These data suggest that TNF-α and IL-1 may play a direct role in Helicobacter pylori-induced hypergastrinemia.


Sign in / Sign up

Export Citation Format

Share Document