Extracellular Loop 3 (EL3) and EL3-Proximal Transmembrane Helix 7 of the Mammalian Type I and Type II Gonadotropin-Releasing Hormone (GnRH) Receptors Determine Differential Ligand Selectivity to GnRH-I and GnRH-II

2005 ◽  
Vol 67 (4) ◽  
pp. 1099-1110 ◽  
Author(s):  
Jian Hua Li ◽  
Han Choe ◽  
Ai Fen Wang ◽  
Kaushik Maiti ◽  
Chengbing Wang ◽  
...  
Endocrinology ◽  
2005 ◽  
Vol 146 (6) ◽  
pp. 2639-2649 ◽  
Author(s):  
Adam J. Pawson ◽  
Stuart Maudsley ◽  
Kevin Morgan ◽  
Lindsay Davidson ◽  
Zvi Naor ◽  
...  

Reproduction ◽  
2003 ◽  
pp. 271-278 ◽  
Author(s):  
AJ Pawson ◽  
K Morgan ◽  
SR Maudsley ◽  
RP Millar

Humans may be particularly unusual with respect to the gonadotrophin-releasing hormone (GnRH) control of their reproductive axis in that they possess two distinct GnRH precursor genes, on chromosomes 8p11-p21 and 20p13, but only one conventional GnRH receptor subtype (type I GnRH receptor) encoded within the genome, on chromosome 4. A disrupted human type II GnRH receptor gene homologue is present on chromosome 1q12. The genes encoding GnRH ligand precursors and GnRH receptors have now been characterized in a broad range of vertebrate species, including fish, amphibians and mammals. Ligand precursors and receptors can be categorized into three phylogenetic families. Members of each family exist in primitive vertebrates, whereas mammals exhibit selective loss of ligand precursor and receptor genes. One interpretation of these findings is that each ligand-cognate receptor family may have evolved to fulfil a separate function in reproductive physiology and that species-specific gene inactivation, modification or loss may have occurred during evolution when particular roles have become obsolete or subject to regulation by a different biochemical pathway. Evidence in support of this concept is available following the characterization of the chromosomal loci encoding the human type II GnRH receptor homologue, a rat type II GnRH receptor gene remnant (on rat chromosome 18) and a mouse type II GnRH ligand precursor gene remnant (on mouse chromosome 2). Whether type I GnRH and type II GnRH peptides elicit different signalling responses in humans by activation of the type I GnRH receptor in a cell type-specific fashion remains to be shown. Recent structure-function studies of GnRH ligands and GnRH receptors and their expression patterns in different tissues add further intrigue to this hypothesis by indicating novel roles for GnRH such as neuromodulation of reproductive function and direct regulation of peripheral reproductive tissues. Surprises concerning the complexities of GnRH ligand and receptor function in reproductive endocrinology should continue to emerge in the future.


2003 ◽  
Vol 209 (1-2) ◽  
pp. 33-42 ◽  
Author(s):  
Ai Fen Wang ◽  
Jian Hua Li ◽  
Kaushik Maiti ◽  
Wang Phil Kim ◽  
Hae Mook Kang ◽  
...  

2006 ◽  
Vol 191 (3) ◽  
pp. 625-636 ◽  
Author(s):  
Kathleen R Sedgley ◽  
Ann R Finch ◽  
Christopher J Caunt ◽  
Craig A McArdle

Gonadotropin-releasing hormone receptors (GnRHRs) are expressed in gonadotropes and several extra-pituitary sites. They are assumed to be cell surface proteins but the human (h) GnRHR lacks features favoring plasma membrane localization and receptor location varies with cell type. When expressed in mammary (MCF7) cells, cell surface hGnRHR binding was much lower than that of mouse and sheep GnRHRs (type I GnRHRs without C-terminal tails), Xenopus (X) and marmoset type II GnRHRs (type II GnRHRs with C-tails) or chimeric receptors (type I GnRHRs with added XGnRHR C-tails). hGnRHR binding was higher in αT4 (gonadotrope-derived) cells and was increased less by C-tail addition. Whole cell levels of tagged human, Xenopus and chimeric GnRHRs were comparable (Western blotting) and confocal microscopy revealed that the hGnRHR is primarily intracellular (distribution similar to the endoplasmic reticulum marker, calreticulin), whereas most XGnRHR is at the plasma membrane, and adding the C-tail increased cell surface hGnRHR levels. A membrane-permeant antagonist increased cell surface hGnRHR number (>4-fold, t½ = 4 h) and also increased hGnRHR signaling and hGnRHR-mediated inhibition of proliferation. A more rapid increase in hGnRHR binding occurred when the temperature was raised from 4 to 37 °C (>5-fold, t½ = 15 min) and this effect was prevented by mutation to prevent signaling. Thus, cell surface GnRHR expression depends on receptor and cell type and the hGnRHR is primarily an intracellular protein that traffics to the cell surface for signaling in MCF7 cells. Manipulations favoring such trafficking may facilitate selective targeting of extra-pituitary GnRHRs.


1981 ◽  
Vol 36 (11) ◽  
pp. 633-634
Author(s):  
DAVID R. PIEPER ◽  
JOANN S. RICHARDS ◽  
JOHN C. MARSHALL

2005 ◽  
Vol 35 (1) ◽  
pp. 177-189 ◽  
Author(s):  
James N Hislop ◽  
Christopher J Caunt ◽  
Kathleen R Sedgley ◽  
Eammon Kelly ◽  
Stuart Mundell ◽  
...  

Activation of seven-transmembrane receptors is typically followed by desensitization and arrestin-dependent internalization via vesicles that are pinched off by a dynamin collar. Arrestins also scaffold Src, which mediates dynamin-dependent internalization of β2-adrenergic receptors. Type I mammalian gonadotropin-releasing hormone receptors (GnRHRs) do not rapidly desensitize or internalize (characteristics attributed to their unique lack of C-terminal tails) whereas non-mammalian GnRHRs (that have C-terminal tails) are rapidly internalized and desensitized. Moreover, internalization of Xenopus (X) GnRHRs is dynamin-dependent whereas that of human (h) GnRHRs is not, raising the possibility that binding of arrestin to the C-terminal tails of GnRHRs targets them to the dynamin-dependent internalization pathway. To test this we have compared wild-type GnRHRs with chimeric receptors (XGnRHR C-terminal tail added to the hGnRHR alone (h.XtGnRHR) or with exchange of the third intracellular loops (h.Xl.XtGnRHR)). We show that adding the XGnRHR C-terminal tail facilitates arrestin- and dynamin-dependent internalization as well as arrestin/green fluorescent protein translocation, but Src (or mitogen-activated protein kinase/extracellular-signal-regulated kinase kinase) inhibition does not slow internalization, and h.XtGnRHR internalization is slower than that of the hGnRHR. Moreover, arrestin expression increased XGnRHR internalization even when dynamin was inhibited and h.Xl.XtGnRHR underwent rapid arrestin-dependent internalization without signaling to Gq/11. Thus, although the C-terminal tail can direct GnRHRs for arrestin- and dynamin-dependent internalization, this effect is not dependent on Src activation and arrestin can also facilitate dynamin-independent internalization.


Sign in / Sign up

Export Citation Format

Share Document