Side-Chain Substitutions within Angiotensin II Reveal Different Requirements for Signaling, Internalization, and Phosphorylation of Type 1A Angiotensin Receptors

2002 ◽  
Vol 61 (4) ◽  
pp. 768-777 ◽  
Author(s):  
Alice C. Holloway ◽  
Hongwei Qian ◽  
Luisa Pipolo ◽  
James Ziogas ◽  
Shin-ichiro Miura ◽  
...  
2004 ◽  
Vol 287 (3) ◽  
pp. F452-F459 ◽  
Author(s):  
Albert Quan ◽  
Sumana Chakravarty ◽  
Jian-Kang Chen ◽  
Jian-Chun Chen ◽  
Samer Loleh ◽  
...  

The proximal tubule contains an autonomous renin-angiotensin system that regulates transport independently of circulating angiotensin II. Androgens are known to increase expression of angiotensinogen, but the effect of androgens on proximal tubule transport is unknown. In this in vivo microperfusion study, we examined the effect of androgens on proximal tubule transport. The volume reabsorptive rate in Sprague-Dawley rats given dihydrotestosterone (DHT) injections was significantly higher than in control rats given vehicle injections (4.57 ± 0.31 vs. 3.31 ± 0.23 nl·min−1·mm−1, P < 0.01). Luminally perfusing with either enalaprilat (10−4 M) to inhibit production of angiotensin II or losartan (10−8 M) to block the angiotensin receptor decreased the proximal tubule volume reabsorptive rate in DHT-treated rats to a significantly greater degree than in control vehicle-injected rats. The renal expression of angiotensinogen was shown to be higher in the DHT-treated animals, using Northern blot analysis. The expression of angiotensin receptors, determined by specific binding of angiotensin II, was not different in the two groups of animals. Brush-border membrane protein abundance of the Na/H exchanger, a membrane transport protein under angiotensin II regulation, was also higher in DHT-treated rats vs. control rats. Rats that received DHT had higher blood pressures than the control rats but had no change in their glomerular filtration rate. In addition, serum angiotensin II levels were lower in DHT-treated vs. control rats. These results suggest that androgens may directly upregulate the proximal tubule renin-angiotensin system, increase the volume reabsorptive rate, and thereby increase extracellular volume and blood pressure and secondarily decrease serum angiotensin II levels.


Author(s):  
Caglar Cosarderelioglu ◽  
Lolita S Nidadavolu ◽  
Claudene J George ◽  
Ruth Marx ◽  
Laura Powell ◽  
...  

Abstract Aging is a key risk factor in Alzheimer's dementia (AD) development and progression. The primary dementia-protective benefits of Angiotensin II subtype 1 receptor (AT1R) blockers are believed to arise from systemic effects on blood pressure. However, a brain-specific renin-angiotensin system (b-RAS) exists, which can be altered by AT1R blockers. Brain RAS acts mainly through three angiotensin receptors: AT1R, AT2R, and AT4R. Changes in these brain angiotensin receptors may accelerate the progression of AD. Using post-mortem frontal cortex brain samples of age- and sex-matched cognitively normal individuals (n = 30) and AD patients (n = 30), we sought to dissect the b-RAS changes associated with AD and assess how these changes correlate with brain markers of oxidative stress, inflammation, and mitochondrial dysfunction as well as amyloid-β and paired helical filament tau pathologies. Our results show higher protein levels of the pro-inflammatory AT1R and phospho-ERK (pERK) in the brains of AD participants. Brain AT1R levels and pERK correlated with higher oxidative stress, lower cognitive performance, and higher tangle and amyloid-β scores. This study identifies molecular changes in b-RAS and offers insight into the role of b-RAS in AD-related brain pathology.


2002 ◽  
Vol 103 (s2002) ◽  
pp. 380S-384S ◽  
Author(s):  
Isabelle BROCHU ◽  
Julie LABONTÉ ◽  
Ghassan BKAILY ◽  
Pedro D'ORLÉANS-JUSTE

Mice with disruption of the kinin B2 receptor (B2KO mice) are sensitive to salt-rich diets, which causes hypertension. The aim of the study was to assess the role of endothelin-1 (ET-1) and angiotensin-II in hypertensive B2KO mice on a salt-rich diet. We also wanted to verify if there is an upregulation of the mRNA expression of the precursors or receptors for these hormones. Two groups of B2KO mice (20–25g) were investigated. The first group received an 8% NaCl diet with 1% NaCl in drinking water (HS) and the second was fed with normal food with tap water (NS). The antagonists tested were the ETA receptor antagonist BQ-123 (1 and 5mg/kg), the ETB receptor antagonist BQ-788 (0.25 and 1mg/kg), the angiotensin receptor type 1 antagonist losartan (10mg/kg) and the angiotensin-converting enzyme inhibitor captopril (3mg/kg). These were injected intraperitoneally 30min prior to blood pressure measurement by the tail-cuff method. We also studied the level of expression of preproET-1, ET-1 receptors, angiotensinogen and angiotensin receptors by RNA extraction from the heart and kidneys of these mice followed by reverse transcriptase (RT)-PCR. B2KO mice (HS) were hypertensive after 8 weeks compared with B2KO mice on normal diet (HS, 93.4±1.5mmHg, n = 7; NS, 61.4±2.7mmHg, n = 7). In the HS group, the mean arterial blood pressure was significantly reduced by BQ-123 (5mg/kg) to 61.9±1.8mmHg (n = 7), by BQ-788 (1mg/kg) to 58.8±2.6mmHg (n = 6), by losartan (10mg/kg) to 73.2±1.7mmHg (n = 8) and by captopril (3mg/kg) to 86.0±2.3mmHg (n = 8). The expression studied by RT-PCR did not show any difference (either in precursors or receptors expression) between hypertensive and normal mice. The four antagonists used seemed to reverse the hypertension. These results suggest that ET-1 and angiotensin-II are probably involved in the mechanism that leads to hypertension since the effect of these hormones is probably not compensated by kinins in B2KO mice. Further studies are necessary to understand the implication of the cross-talk between these hormones in the hypertensive state.


1979 ◽  
Vol 57 (11) ◽  
pp. 1256-1266 ◽  
Author(s):  
William H. Waugh ◽  
Theodore E. Bales

Dose-dependent isometric contractions to [Asp1,Ile5]-angiotensin II (AII) and des-Asp1-[Ile5]-angiotensin II (AIII) were obtained with 3-mm-wide rings of rabbit thoracic aorta and femoral artery in microbaths. A period of 2.5–3 h was required to obtain reproducible contractile responses of increased sensitivity. Contractions developed faster and they were much more forceful but less sustained in femoral arterial rings than in aortic rings. Noncumulative dose–response curves with AII and AIII were parallel and reached the same maximum. Peak contractile responses were linearly proportional to the receptor stimulation predicted from the mass action equation and the concept of intrinsic activity relating bath dosage of agonist to the number of myotropic receptors occupied by AII and by AIII. These findings validated measurement of the myotropic affinities of both tissues for AII and AIII by the obtained ED50 values. In 0.6-mL baths, developed with the use of a meshed screen for reoxygenation, the apparent affinities of aortic muscle for AII and AIII averaged 0.149 and 0.0030 nM, respectively. The mean affinities were much greater at 0.594 and 0.236 nM, respectively, in femoral arterial muscle. The myotropic affinity for AIII relative to that for AII averaged 2.26% in the aorta but 40.8% in the femoral artery. The apparent affinities were reduced and contractions less forceful in 0.24-mL baths without regassing. The results suggest that AII and AIII may stimulate the same angiotensin receptors in aorta and femoral artery and that the receptors may be different in structure or immediate environment in these two vascular tissues.


2002 ◽  
Vol 12 (18) ◽  
pp. 2627-2633 ◽  
Author(s):  
Panagiota Roumelioti ◽  
Ludmila Polevaya ◽  
Panagiotis Zoumpoulakis ◽  
Nektarios Giatas ◽  
Ilze Mutule ◽  
...  

2011 ◽  
Vol 301 (6) ◽  
pp. F1314-F1325 ◽  
Author(s):  
Jill W. Verlander ◽  
Seongun Hong ◽  
Vladimir Pech ◽  
James L. Bailey ◽  
Diana Agazatian ◽  
...  

Pendrin is an anion exchanger expressed in the apical regions of B and non-A, non-B intercalated cells. Since angiotensin II increases pendrin-mediated Cl− absorption in vitro, we asked whether angiotensin II increases pendrin expression in vivo and whether angiotensin-induced hypertension is pendrin dependent. While blood pressure was similar in pendrin null and wild-type mice under basal conditions, following 2 wk of angiotensin II administration blood pressure was 31 mmHg lower in pendrin null than in wild-type mice. Thus pendrin null mice have a blunted pressor response to angiotensin II. Further experiments explored the effect of angiotensin on pendrin expression. Angiotensin II administration shifted pendrin label from the subapical space to the apical plasma membrane, independent of aldosterone. To explore the role of the angiotensin receptors in this response, pendrin abundance and subcellular distribution were examined in wild-type, angiotensin type 1a (Agtr1a) and type 2 receptor (Agtr2) null mice given 7 days of a NaCl-restricted diet (< 0.02% NaCl). Some mice received an Agtr1 inhibitor (candesartan) or vehicle. Both Agtr1a gene ablation and Agtr1 inhibitors shifted pendrin label from the apical plasma membrane to the subapical space, independent of the Agtr2 or nitric oxide (NO). However, Agtr1 ablation reduced pendrin protein abundance through the Agtr2 and NO. Thus angiotensin II-induced hypertension is pendrin dependent. Angiotensin II acts through the Agtr1a to shift pendrin from the subapical space to the apical plasma membrane. This Agtr1 action may be blunted by the Agtr2, which acts through NO to reduce pendrin protein abundance.


Cells ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 1336
Author(s):  
Filippo Acconcia

The renin-angiotensin system (RAS) is a network of proteins regulating many aspects of human physiology, including cardiovascular, pulmonary, and immune system physiology. The RAS is a complicated network of G-protein coupled receptors (GPCRs) (i.e., AT1R, AT2R, MASR, and MRGD) orchestrating the effects of several hormones (i.e., angiotensin II, angiotensin (1–7), and alamandine) produced by protease-based transmembrane receptors (ACE1 and ACE2). Two signaling axes have been identified in the RAS endocrine system that mediate the proliferative actions of angiotensin II (i.e., the AT1R-based pathway) or the anti-proliferative effects of RAS hormones (i.e., the AT2R-, MAS-, and MRGD-based pathways). Disruption of the balance between these two axes can cause different diseases (e.g., cardiovascular pathologies and the severe acute respiratory syndrome coronavirus 2- (SARS-CoV-2)-based COVID-19 disease). It is now accepted that all the components of the RAS endocrine system are expressed in cancer, including cancer of the breast. Breast cancer (BC) is a multifactorial pathology for which there is a continuous need to identify novel drugs. Here, I reviewed the possible roles of both axes of the RAS endocrine network as potential druggable pathways in BC. Remarkably, the analysis of the current knowledge of the different GPCRs of the RAS molecular system not only confirms that AT1R could be considered a drug target and that its inhibition by losartan and candesartan could be useful in the treatment of BC, but also identifies Mas-related GPCR member D (MRGD) as a druggable protein. Overall, the RAS of GPCRs offers multifaceted opportunities for the development of additional compounds for the treatment of BC.


Sign in / Sign up

Export Citation Format

Share Document