scholarly journals Macroecological drivers of archaea and bacteria in benthic deep-sea ecosystems

2016 ◽  
Vol 2 (4) ◽  
pp. e1500961 ◽  
Author(s):  
Roberto Danovaro ◽  
Massimiliano Molari ◽  
Cinzia Corinaldesi ◽  
Antonio Dell’Anno

Bacteria and archaea dominate the biomass of benthic deep-sea ecosystems at all latitudes, playing a crucial role in global biogeochemical cycles, but their macroscale patterns and macroecological drivers are still largely unknown. We show the results of the most extensive field study conducted so far to investigate patterns and drivers of the distribution and structure of benthic prokaryote assemblages from 228 samples collected at latitudes comprising 34°N to 79°N, and from ca. 400- to 5570-m depth. We provide evidence that, in deep-sea ecosystems, benthic bacterial and archaeal abundances significantly increase from middle to high latitudes, with patterns more pronounced for archaea, and particularly for Marine Group I Thaumarchaeota. Our results also reveal that different microbial components show varying sensitivities to changes in temperature conditions and food supply. We conclude that climate change will primarily affect deep-sea benthic archaea, with important consequences on global biogeochemical cycles, particularly at high latitudes.

2016 ◽  
Vol 2 (10) ◽  
pp. e1600492 ◽  
Author(s):  
Roberto Danovaro ◽  
Antonio Dell’Anno ◽  
Cinzia Corinaldesi ◽  
Eugenio Rastelli ◽  
Ricardo Cavicchioli ◽  
...  

Viruses are the most abundant biological entities in the world’s oceans, and they play a crucial role in global biogeochemical cycles. In deep-sea ecosystems, archaea and bacteria drive major nutrient cycles, and viruses are largely responsible for their mortality, thereby exerting important controls on microbial dynamics. However, the relative impact of viruses on archaea compared to bacteria is unknown, limiting our understanding of the factors controlling the functioning of marine systems at a global scale. We evaluate the selectivity of viral infections by using several independent approaches, including an innovative molecular method based on the quantification of archaeal versus bacterial genes released by viral lysis. We provide evidence that, in all oceanic surface sediments (from 1000- to 10,000-m water depth), the impact of viral infection is higher on archaea than on bacteria. We also found that, within deep-sea benthic archaea, the impact of viruses was mainly directed at members of specific clades of Marine Group I Thaumarchaeota. Although archaea represent, on average, ~12% of the total cell abundance in the top 50 cm of sediment, virus-induced lysis of archaea accounts for up to one-third of the total microbial biomass killed, resulting in the release of ~0.3 to 0.5 gigatons of carbon per year globally. Our results indicate that viral infection represents a key mechanism controlling the turnover of archaea in surface deep-sea sediments. We conclude that interactions between archaea and their viruses might play a profound, previously underestimated role in the functioning of deep-sea ecosystems and in global biogeochemical cycles.


Land ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 190 ◽  
Author(s):  
Christopher Poeplau ◽  
Julia Schroeder ◽  
Ed Gregorich ◽  
Irina Kurganova

Climate change may increase the importance of agriculture in the global Circumpolar North with potentially critical implications for pristine northern ecosystems and global biogeochemical cycles. With this in mind, a global online survey was conducted to understand northern agriculture and farmers’ perspective on environmental change north of 60° N. In the obtained dataset with 67 valid answers, Alaska and the Canadian territories were dominated by small-scale vegetable, herbs, hay, and flower farms; the Atlantic Islands were dominated by sheep farms; and Fennoscandia was dominated by cereal farming. In Alaska and Canada, farmers had mostly immigrated with hardly any background in farming, while farmers in Fennoscandia and on the Atlantic Islands mostly continued family traditions. Accordingly, the average time since conversion from native land was 28 ± 28 and 25 ± 12 years in Alaska and Canada, respectively, but 301 ± 291 and 255 ± 155 years on the Atlantic Islands and in Fennoscandia, respectively, revealing that American northern agriculture is expanding. Climate change was observed by 84% of all farmers, of which 67% have already started adapting their farming practices, by introducing new varieties or altering timings. Fourteen farmers reported permafrost on their land, with 50% observing more shallow permafrost on uncultivated land than on cultivated land. Cultivation might thus accelerate permafrost thawing, potentially with associated consequences for biogeochemical cycles and greenhouse gas emissions. About 87% of the surveyed farmers produced for the local market, reducing emissions of food transport. The dynamics of northern land-use change and agriculture with associated environmental changes should be closely monitored. The dataset is available for further investigations.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Emily J. Zakem ◽  
Martin F. Polz ◽  
Michael J. Follows

Abstract Microbial activity mediates the fluxes of greenhouse gases. However, in the global models of the marine and terrestrial biospheres used for climate change projections, typically only photosynthetic microbial activity is resolved mechanistically. To move forward, we argue that global biogeochemical models need a theoretically grounded framework with which to constrain parameterizations of diverse microbial metabolisms. Here, we explain how the key redox chemistry underlying metabolisms provides a path towards this goal. Using this first-principles approach, the presence or absence of metabolic functional types emerges dynamically from ecological interactions, expanding model applicability to unobserved environments. “Nothing is less real than realism. It is only by selection, by elimination, by emphasis, that we get at the real meaning of things.” –Georgia O’Keefe


2020 ◽  
Vol 637 ◽  
pp. 159-180
Author(s):  
ND Gallo ◽  
M Beckwith ◽  
CL Wei ◽  
LA Levin ◽  
L Kuhnz ◽  
...  

Natural gradient systems can be used to examine the vulnerability of deep-sea communities to climate change. The Gulf of California presents an ideal system for examining relationships between faunal patterns and environmental conditions of deep-sea communities because deep-sea conditions change from warm and oxygen-rich in the north to cold and severely hypoxic in the south. The Monterey Bay Aquarium Research Institute (MBARI) remotely operated vehicle (ROV) ‘Doc Ricketts’ was used to conduct seafloor video transects at depths of ~200-1400 m in the northern, central, and southern Gulf. The community composition, density, and diversity of demersal fish assemblages were compared to environmental conditions. We tested the hypothesis that climate-relevant variables (temperature, oxygen, and primary production) have more explanatory power than static variables (latitude, depth, and benthic substrate) in explaining variation in fish community structure. Temperature best explained variance in density, while oxygen best explained variance in diversity and community composition. Both density and diversity declined with decreasing oxygen, but diversity declined at a higher oxygen threshold (~7 µmol kg-1). Remarkably, high-density fish communities were observed living under suboxic conditions (<5 µmol kg-1). Using an Earth systems global climate model forced under an RCP8.5 scenario, we found that by 2081-2100, the entire Gulf of California seafloor is expected to experience a mean temperature increase of 1.08 ± 1.07°C and modest deoxygenation. The projected changes in temperature and oxygen are expected to be accompanied by reduced diversity and related changes in deep-sea demersal fish communities.


2020 ◽  
Vol 9 (1) ◽  
pp. 23
Author(s):  
Caroline M. Plugge ◽  
Diana Z. Sousa

Anaerobic microorganisms, Bacteria and Archaea, have an essential role in global biogeochemical cycles [...]


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Lennart Quante ◽  
Sven N. Willner ◽  
Robin Middelanis ◽  
Anders Levermann

AbstractDue to climate change the frequency and character of precipitation are changing as the hydrological cycle intensifies. With regards to snowfall, global warming has two opposing influences; increasing humidity enables intense snowfall, whereas higher temperatures decrease the likelihood of snowfall. Here we show an intensification of extreme snowfall across large areas of the Northern Hemisphere under future warming. This is robust across an ensemble of global climate models when they are bias-corrected with observational data. While mean daily snowfall decreases, both the 99th and the 99.9th percentiles of daily snowfall increase in many regions in the next decades, especially for Northern America and Asia. Additionally, the average intensity of snowfall events exceeding these percentiles as experienced historically increases in many regions. This is likely to pose a challenge to municipalities in mid to high latitudes. Overall, extreme snowfall events are likely to become an increasingly important impact of climate change in the next decades, even if they will become rarer, but not necessarily less intense, in the second half of the century.


1998 ◽  
Vol 45 (4-5) ◽  
pp. 817-842 ◽  
Author(s):  
Lynn M.L. Lauerman ◽  
Ronald S. Kaufmann
Keyword(s):  

Eos ◽  
2005 ◽  
Vol 86 (44) ◽  
pp. 434
Author(s):  
Mohi Kumar

Sign in / Sign up

Export Citation Format

Share Document