scholarly journals Quantum localization bounds Trotter errors in digital quantum simulation

2019 ◽  
Vol 5 (4) ◽  
pp. eaau8342 ◽  
Author(s):  
Markus Heyl ◽  
Philipp Hauke ◽  
Peter Zoller

A fundamental challenge in digital quantum simulation (DQS) is the control of an inherent error, which appears when discretizing the time evolution of a quantum many-body system as a sequence of quantum gates, called Trotterization. Here, we show that quantum localization-by constraining the time evolution through quantum interference-strongly bounds these errors for local observables, leading to an error independent of system size and simulation time. DQS is thus intrinsically much more robust than suggested by known error bounds on the global many-body wave function. This robustness is characterized by a sharp threshold as a function of the Trotter step size, which separates a localized region with controllable Trotter errors from a quantum chaotic regime. Our findings show that DQS with comparatively large Trotter steps can retain controlled errors for local observables. It is thus possible to reduce the number of gate operations required to represent the desired time evolution faithfully.


2019 ◽  
Vol 5 (1) ◽  
Author(s):  
Lukas M. Sieberer ◽  
Tobias Olsacher ◽  
Andreas Elben ◽  
Markus Heyl ◽  
Philipp Hauke ◽  
...  

Abstract This work aims at giving Trotter errors in digital quantum simulation (DQS) of collective spin systems an interpretation in terms of quantum chaos of the kicked top. In particular, for DQS of such systems, regular dynamics of the kicked top ensures convergence of the Trotterized time evolution, while chaos in the top, which sets in above a sharp threshold value of the Trotter step size, corresponds to the proliferation of Trotter errors. We show the possibility to analyze this phenomenology in a wide variety of experimental realizations of the kicked top, ranging from single atomic spins to trapped-ion quantum simulators which implement DQS of all-to-all interacting spin-1/2 systems. These platforms thus enable in-depth studies of Trotter errors and their relation to signatures of quantum chaos, including the growth of out-of-time-ordered correlators.



2019 ◽  
Author(s):  
Brian Nguyen ◽  
Guo P Chen ◽  
Matthew M. Agee ◽  
Asbjörn M. Burow ◽  
Matthew Tang ◽  
...  

Prompted by recent reports of large errors in noncovalent interaction (NI) energies obtained from many-body perturbation theory (MBPT), we compare the performance of second-order Møller–Plesset MBPT (MP2), spin-scaled MP2, dispersion-corrected semilocal density functional approximations (DFA), and the post-Kohn–Sham random phase approximation (RPA) for predicting binding energies of supramolecular complexes contained in the S66, L7, and S30L benchmarks. All binding energies are extrapolated to the basis set limit, corrected for basis set superposition errors, and compared to reference results of the domain-based local pair-natural orbital coupled-cluster (DLPNO-CCSD(T)) or better quality. Our results confirm that MP2 severely overestimates binding energies of large complexes, producing relative errors of over 100% for several benchmark compounds. RPA relative errors consistently range between 5-10%, significantly less than reported previously using smaller basis sets, whereas spin-scaled MP2 methods show limitations similar to MP2, albeit less pronounced, and empirically dispersion-corrected DFAs perform almost as well as RPA. Regression analysis reveals a systematic increase of relative MP2 binding energy errors with the system size at a rate of approximately 1‰ per valence electron, whereas the RPA and dispersion-corrected DFA relative errors are virtually independent of the system size. These observations are corroborated by a comparison of computed rotational constants of organic molecules to gas-phase spectroscopy data contained in the ROT34 benchmark. To analyze these results, an asymptotic adiabatic connection symmetry-adapted perturbation theory (AC-SAPT) is developed which uses monomers at full coupling whose ground-state density is constrained to the ground-state density of the complex. Using the fluctuation–dissipation theorem, we obtain a nonperturbative “screened second-order” expression for the dispersion energy in terms of monomer quantities which is exact for non-overlapping subsystems and free of induction terms; a first-order RPA-like approximation to the Hartree, exchange, and correlation kernel recovers the macroscopic Lifshitz limit. The AC-SAPT expansion of the interaction energy is obtained from Taylor expansion of the coupling strength integrand. Explicit expressions for the convergence radius of the AC-SAPT series are derived within RPA and MBPT and numerically evaluated. Whereas the AC-SAPT expansion is always convergent for nondegenerate monomers when RPA is used, it is found to spuriously diverge for second-order MBPT, except for the smallest and least polarizable monomers. The divergence of the AC-SAPT series within MBPT is numerically confirmed within RPA; prior numerical results on the convergence of the SAPT expansion for MBPT methods are revisited and support this conclusion once sufficiently high orders are included. The cause of the failure of MBPT methods for NIs of large systems is missing or incomplete “electrodynamic” screening of the Coulomb interaction due to induced particle–hole pairs between electrons in different monomers, leaving the effective interaction too strong for AC-SAPT to converge. Hence, MBPT cannot be considered reliable for quantitative predictions of NIs, even in moderately polarizable molecules with a few tens of atoms. The failure to accurately account for electrodynamic polarization makes MBPT qualitatively unsuitable for applications such as NIs of nanostructures, macromolecules, and soft materials; more robust non-perturbative approaches such as RPA or coupled cluster methods should be used instead whenever possible.<br>



2020 ◽  
Vol 116 (23) ◽  
pp. 230501
Author(s):  
Samuel A. Wilkinson ◽  
Michael J. Hartmann
Keyword(s):  


Entropy ◽  
2020 ◽  
Vol 22 (9) ◽  
pp. 984
Author(s):  
Regina Finsterhölzl ◽  
Manuel Katzer ◽  
Andreas Knorr ◽  
Alexander Carmele

This paper presents an efficient algorithm for the time evolution of open quantum many-body systems using matrix-product states (MPS) proposing a convenient structure of the MPS-architecture, which exploits the initial state of system and reservoir. By doing so, numerically expensive re-ordering protocols are circumvented. It is applicable to systems with a Markovian type of interaction, where only the present state of the reservoir needs to be taken into account. Its adaption to a non-Markovian type of interaction between the many-body system and the reservoir is demonstrated, where the information backflow from the reservoir needs to be included in the computation. Also, the derivation of the basis in the quantum stochastic Schrödinger picture is shown. As a paradigmatic model, the Heisenberg spin chain with nearest-neighbor interaction is used. It is demonstrated that the algorithm allows for the access of large systems sizes. As an example for a non-Markovian type of interaction, the generation of highly unusual steady states in the many-body system with coherent feedback control is demonstrated for a chain length of N=30.





2014 ◽  
Vol 16 (2) ◽  
pp. 453-457 ◽  
Author(s):  
Peer C. Fechner ◽  
Hanspeter Helm


2019 ◽  
Vol 10 (1) ◽  
pp. 337-356 ◽  
Author(s):  
Zi-Xiang Li ◽  
Hong Yao

Reliable simulations of correlated quantum systems, including high-temperature superconductors and frustrated magnets, are increasingly desired nowadays to further our understanding of essential features in such systems. Quantum Monte Carlo (QMC) is a unique numerically exact and intrinsically unbiased method to simulate interacting quantum many-body systems. More importantly, when QMC simulations are free from the notorious fermion sign problem, they can reliably simulate interacting quantum models with large system size and low temperature to reveal low-energy physics such as spontaneously broken symmetries and universal quantum critical behaviors. Here, we concisely review recent progress made in developing new sign-problem-free QMC algorithms, including those employing Majorana representation and those utilizing hot-spot physics. We also discuss applications of these novel sign-problem-free QMC algorithms in simulations of various interesting quantum many-body models. Finally, we discuss possible future directions of designing sign-problem-free QMC methods.



Sign in / Sign up

Export Citation Format

Share Document