scholarly journals Targeting dePARylation selectively suppresses DNA repair–defective and PARP inhibitor–resistant malignancies

2019 ◽  
Vol 5 (4) ◽  
pp. eaav4340 ◽  
Author(s):  
Shih-Hsun Chen ◽  
Xiaochun Yu

While poly(ADP-ribosyl)ation (PARylation) plays an important role in DNA repair, the role of dePARylation in DNA repair remains elusive. Here, we report that a novel small molecule identified from the NCI database, COH34, specifically inhibits poly(ADP-ribose) glycohydrolase (PARG), the major dePARylation enzyme, with nanomolar potency in vitro and in vivo. COH34 binds to the catalytic domain of PARG, thereby prolonging PARylation at DNA lesions and trapping DNA repair factors. This compound induces lethality in cancer cells with DNA repair defects and exhibits antitumor activity in xenograft mouse cancer models. Moreover, COH34 can sensitize tumor cells with DNA repair defects to other DNA-damaging agents, such as topoisomerase I inhibitors and DNA-alkylating agents, which are widely used in cancer chemotherapy. Notably, COH34 also efficiently kills PARP inhibitor–resistant cancer cells. Together, our study reveals the molecular mechanism of PARG in DNA repair and provides an effective strategy for future cancer therapies.

2021 ◽  
Vol 186 ◽  
pp. 114450
Author(s):  
Pooja Gupta ◽  
Bhaskar Saha ◽  
Subrata Chattopadhyay ◽  
Birija Sankar Patro
Keyword(s):  

2020 ◽  
Author(s):  
Jessica Gartrell ◽  
Marcia Mellado-Largarde ◽  
Nancy E. Martinez ◽  
Michael R. Clay ◽  
Armita Bahrami ◽  
...  

AbstractPediatric sarcomas represent a heterogeneous group of malignancies that exhibit variable response to DNA damaging chemotherapy. Schlafen family member 11 protein (SLFN11) increases sensitivity to replicative stress, and SLFN11 gene silencing has been implicated as a common mechanism of drug resistance in tumors in adults. We found SLFN11 to be widely expressed in our cohort of pediatric sarcomas. In sarcoma cell lines, protein expression strongly correlated with response to the PARP inhibitor talazoparib (TAL) and the topoisomerase I inhibitor irinotecan (IRN), with SLFN11 knockout resulting in significant loss of sensitivity in vitro and in vivo. However, SLFN11 expression was not associated with favorable outcomes in a retrospective analysis of our patient cohort; instead, the protein was retained and promoted tumor growth and evasion. Furthermore, we show that pediatric sarcomas develop resistance to TAL and IRN through impaired intrinsic apoptosis, and that resistance can be reversed by selective inhibition of BCL-XL.Statement of SignificanceThe role of SLFN11 in pediatric sarcomas has not been thoroughly explored. In contrast to its activity in adult tumors, SLFN11 did not predict favorable outcomes in pediatric patients, was not silenced, and promoted tumor growth. Resistance to replicative stress in SLFN11-expressing sarcomas was reversed by selective inhibition of BCL-XL.


2013 ◽  
Vol 86 (3) ◽  
pp. 469-476 ◽  
Author(s):  
Joseph W. Shelton ◽  
Timothy V. Waxweiler ◽  
Jerome Landry ◽  
Huiying Gao ◽  
Yanbo Xu ◽  
...  

2015 ◽  
Vol 113 (4) ◽  
pp. 960-965 ◽  
Author(s):  
Sarah K. C. Cheung ◽  
Po-Kai Chuang ◽  
Han-Wen Huang ◽  
Wendy W. Hwang-Verslues ◽  
Candy Hsin-Hua Cho ◽  
...  

The discovery of cancer stem cells (CSCs), which are responsible for self-renewal and tumor growth in heterogeneous cancer tissues, has stimulated interests in developing new cancer therapies and early diagnosis. However, the markers currently used for isolation of CSCs are often not selective enough to enrich CSCs for the study of this special cell population. Here we show that the breast CSCs isolated with CD44+CD24-/loSSEA-3+ or ESAhiPROCRhiSSEA-3+ markers had higher tumorigenicity than those with conventional markers in vitro and in vivo. As few as 10 cells with CD44+CD24-/loSSEA-3+ formed tumor in mice, compared with more than 100 cells with CD44+CD24-/lo. Suppression of SSEA-3 expression by knockdown of the gene encoding β-1,3-galactosyltransferase 5 (β3GalT5) in the globo-series pathway, led to apoptosis in cancer cells specifically but had no effect on normal cells. This finding is further supported by the analysis of SSEA-3 and the two related globo-series epitopes SSEA4 and globo-H in stem cells (embryonic stem cells and induced pluripotent stem cells) and various normal and cancer cells, and by the antibody approach to target the globo-series glycans and the late-stage clinical trials of a breast cancer vaccine.


Brain ◽  
2019 ◽  
Vol 142 (8) ◽  
pp. 2352-2366 ◽  
Author(s):  
Guo-zhong Yi ◽  
Guanglong Huang ◽  
Manlan Guo ◽  
Xi’an Zhang ◽  
Hai Wang ◽  
...  

Abstract The acquisition of temozolomide resistance is a major clinical challenge for glioblastoma treatment. Chemoresistance in glioblastoma is largely attributed to repair of temozolomide-induced DNA lesions by O6-methylguanine-DNA methyltransferase (MGMT). However, some MGMT-deficient glioblastomas are still resistant to temozolomide, and the underlying molecular mechanisms remain unclear. We found that DYNC2H1 (DHC2) was expressed more in MGMT-deficient recurrent glioblastoma specimens and its expression strongly correlated to poor progression-free survival in MGMT promotor methylated glioblastoma patients. Furthermore, silencing DHC2, both in vitro and in vivo, enhanced temozolomide-induced DNA damage and significantly improved the efficiency of temozolomide treatment in MGMT-deficient glioblastoma. Using a combination of subcellular proteomics and in vitro analyses, we showed that DHC2 was involved in nuclear localization of the DNA repair proteins, namely XPC and CBX5, and knockdown of either XPC or CBX5 resulted in increased temozolomide-induced DNA damage. In summary, we identified the nuclear transportation of DNA repair proteins by DHC2 as a critical regulator of acquired temozolomide resistance in MGMT-deficient glioblastoma. Our study offers novel insights for improving therapeutic management of MGMT-deficient glioblastoma.


Author(s):  
Yi Chieh Lim ◽  
Kathleen S Ensbey ◽  
Carolin Offenhäuser ◽  
Rochelle C J D’souza ◽  
Jason K Cullen ◽  
...  

Abstract Background Despite significant endeavor having been applied to identify effective therapies to treat glioblastoma (GBM), survival outcomes remain intractable. The greatest nonsurgical benefit arises from radiotherapy, though tumors typically recur due to robust DNA repair. Patients could therefore benefit from therapies with the potential to prevent DNA repair and synergize with radiotherapy. In this work, we investigated the potential of salinomycin to enhance radiotherapy and further uncover novel dual functions of this ionophore to induce DNA damage and prevent repair. Methods In vitro primary GBM models and ex vivo GBM patient explants were used to determine the mechanism of action of salinomycin by immunoblot, flow cytometry, immunofluorescence, immunohistochemistry, and mass spectrometry. In vivo efficacy studies were performed using orthotopic GBM animal xenograft models. Salinomycin derivatives were synthesized to increase drug efficacy and explore structure-activity relationships. Results Here we report novel dual functions of salinomycin. Salinomycin induces toxic DNA lesions and prevents subsequent recovery by targeting homologous recombination (HR) repair. Salinomycin appears to target the more radioresistant GBM stem cell–like population and synergizes with radiotherapy to significantly delay tumor formation in vivo. We further developed salinomycin derivatives which display greater efficacy in vivo while retaining the same beneficial mechanisms of action. Conclusion Our findings highlight the potential of salinomycin to induce DNA lesions and inhibit HR to greatly enhance the effect of radiotherapy. Importantly, first-generation salinomycin derivatives display greater efficacy and may pave the way for clinical testing of these agents.


1990 ◽  
Vol 8 (12) ◽  
pp. 2062-2084 ◽  
Author(s):  
R J Epstein

Cytotoxic drugs act principally by damaging tumor-cell DNA. Quantitative analysis of this interaction provides a basis for understanding the biology of therapeutic cell kill as well as a rational strategy for optimizing and predicting tumor response. Recent advances have made it possible to correlate assayed DNA lesions with cytotoxicity in tumor cell lines, in animal models, and in patients with malignant disease. In addition, many of the complex interrelationships between DNA damage, DNA repair, and alterations of gene expression in response to DNA damage have been defined. Techniques for modulating DNA damage and cytotoxicity using schedule-specific cytotoxic combinations, DNA repair inhibitors, cell-cycle manipulations, and adjunctive noncytotoxic drug therapy are being developed, and critical therapeutic targets have been identified within tumor-cell subpopulations and genomic DNA alike. Most importantly, methods for predicting clinical response to cytotoxic therapy using both in vitro markers of tumor-cell sensitivity and in vivo measurements of drug-induced DNA damage are now becoming a reality. These advances can be expected to provide a strong foundation for the development of innovative cytotoxic drug strategies over the next decade.


2012 ◽  
Vol 30 (15_suppl) ◽  
pp. e13564-e13564
Author(s):  
Jingsong Zhang ◽  
Minghui Wu ◽  
Xue Wang

e13564 Background: With the recent success of poly (ADP-ribose) polymerase inhibitor (PARPi) in the treatment of BRCA1 or BRCA2 mutated cancers, there is increasing interest to explore synthetic lethality in cancers with defective DNA repair pathways. Rad51 is an essential protein in the homologous recombination repair (HRR) of DNA double strand breaks. Previous studies with non metastatic prostate cancer (mCaP) cells have reported low Rad51 levels in cells with loss of PTEN or under hypoxia, which then led to their sensitivity to PARPi. Given intra tumor hypoxia and loss of PTEN is common in mCaP, we test PAPRi, ABT888 and DNA damaging topoisomerase I inhibitor, CPT11, either alone or in combination in mCaP preclinical models. Methods: mCaP cell lines with functional PTEN (DU145) and loss of PTEN (PC3) were grew under normoxia (21% O2) or hypoxia (0.2% O2). DNA damage, HRR, apoptosis were assessed with comet assay, western blot, immunofluorescence and flowcytometry. The regulation of RAD51 was studied with quantitative RT-PCR and RAD51 promoter reporter assay. PC3 xenograft was used for in vivo study. Results: Despite of its low levels of expression under hypoxia, up regulation of Rad51 was observed soon after treating hypoxic PC3 and Du145 cells with ABT888 or SN38, an active metabolite of CPT11. Such Rad51 up regulation led to less DNA damage and apoptosis under hypoxia compared to normoxia. Inhibiting RAD51 expression with siRNA overcame PC3 and Du145’s resistance to SN38. Furthermore, ABT888 enhanced the activities of SN38 as detected by clonogenic assay and flowcytometry under both normoxia and hypoxia. Consistent with the in vitro data, ABT888 by itself had limited anti-tumor activities despite the loss of PTEN in PC3 xenografts. The anti-tumor activity of single agent CPT11 was significantly improved with the ABT888 and CPT11 combination (P<0.008). Conclusions: neither loss of PTEN nor hypoxia sensitized mCaP cells to PARPi or DNA damaging drugs. Such resistance under hypoxia was at least partly due to up regulation of Rad51. Combining ABT888 with CPT11 overcame the resistance to CPT11 under hypoxia and enhanced its anti-tumor activities both in vitro and in vivo.


2019 ◽  
Vol 20 (5) ◽  
pp. 1042 ◽  
Author(s):  
Apriliana Cahya Khayrani ◽  
Hafizah Mahmud ◽  
Aung Ko Ko Oo ◽  
Maram H. Zahra ◽  
Miharu Oze ◽  
...  

Paclitaxel (PTX) is one of the front-line drugs approved for the treatment of ovarian cancer. However, the application of PTX is limited due to the significant hydrophobicity and poor pharmacokinetics. We previously reported target-directed liposomes carrying tumor-selective conjugated antibody and encapsulated glycosylated PTX (gPTX-L) which successfully overcome the PTX limitation. The tubulin stabilizing activity of gPTX was equivalent to that of PTX while the cytotoxic activity of gPTX was reduced. In human ovarian cancer cell lines, SK-OV-3 and OVK18, the concentration at which cell growth was inhibited by 50% (IC50) for gPTX range from 15–20 nM, which was sensitive enough to address gPTX-L with tumor-selective antibody coupling for ovarian cancer therapy. The cell membrane receptor CD44 is associated with cancer progression and has been recognized as a cancer stem cell marker including ovarian cancer, becoming a suitable candidate to be targeted by gPTX-L therapy. In this study, gPTX-loading liposomes conjugated with anti-CD44 antibody (gPTX-IL) were assessed for the efficacy of targeting CD44-positive ovarian cancer cells. We successfully encapsulated gPTX into liposomes with the loading efficiency (LE) more than 80% in both of gPTX-L and gPTX-IL with a diameter of approximately 100 nm with efficacy of enhanced cytotoxicity in vitro and of convenient treatment in vivo. As the result, gPTX-IL efficiently suppressed tumor growth in vivo. Therefore gPTX-IL could be a promising formulation for effective ovarian cancer therapies.


2021 ◽  
Vol 4 (12) ◽  
pp. e202101144
Author(s):  
Jingyi Tang ◽  
Patrick J Casey ◽  
Mei Wang

DNA damage is a double-edged sword for cancer cells. On the one hand, DNA damage–induced genomic instability contributes to cancer development; on the other hand, accumulating damage compromises proliferation and survival of cancer cells. Understanding the key regulators of DNA damage repair machinery would benefit the development of cancer therapies that induce DNA damage and apoptosis. In this study, we found that isoprenylcysteine carboxylmethyltransferase (ICMT), a posttranslational modification enzyme, plays an important role in DNA damage repair. We found that ICMT suppression consistently reduces the activity of MAPK signaling, which compromises the expression of key proteins in the DNA damage repair machinery. The ensuing accumulation of DNA damage leads to cell cycle arrest and apoptosis in multiple breast cancer cells. Interestingly, these observations are more pronounced in cells grown under anchorage-independent conditions or grown in vivo. Consistent with the negative impact on DNA repair, ICMT inhibition transforms the cancer cells into a “BRCA-like” state, hence sensitizing cancer cells to the treatment of PARP inhibitor and other DNA damage–inducing agents.


Sign in / Sign up

Export Citation Format

Share Document