scholarly journals Label-free surface-sensitive photonic microscopy with high spatial resolution using azimuthal rotation illumination

2019 ◽  
Vol 5 (3) ◽  
pp. eaav5335 ◽  
Author(s):  
Yan Kuai ◽  
Junxue Chen ◽  
Xi Tang ◽  
Yifeng Xiang ◽  
Fengya Lu ◽  
...  

Surface plasmon resonance microscopy (SPRM) with single-direction illumination is a powerful platform for biomedical imaging because of its wide-field, label-free, and high-surface-sensitivity imaging capabilities. However, two disadvantages prevent wider use of SPRM. The first is its poor spatial resolution that can be as large as several micrometers. The second is that SPRM requires use of metal films as sample substrates; this introduces working wavelength limitations. In addition, cell culture growth on metal films is not as universally available as growth on dielectric substrates. Here we show that use of azimuthal rotation illumination allows SPRM spatial resolution to be enhanced by up to an order of magnitude. The metal film can also be replaced by a dielectric multilayer and then a different label-free surface-sensitive photonic microscopy is developed, which has more choices in terms of the working wavelength, polarization, and imaging section, and will bring opportunities for applications in biology.

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Nareg Ohannesian ◽  
Ibrahim Misbah ◽  
Steven H. Lin ◽  
Wei-Chuan Shih

AbstractLabel-free optical imaging of nanoscale objects faces fundamental challenges. Techniques based on propagating surface plasmon resonance (SPR) and localized surface plasmon resonance (LSPR) have shown promises. However, challenges remain to achieve diffraction-limited resolution and better surface localization in SPR imaging. LSPR imaging with dark-field microscopy on metallic nanostructures suffers from low light throughput and insufficient imaging capacity. Here we show ultra-near-field index modulated PlAsmonic NanO-apeRture lAbel-free iMAging (PANORAMA) which uniquely relies on unscattered light to detect sub-100 nm dielectric nanoparticles. PANORAMA provides diffraction-limited resolution, higher surface sensitivity, and wide-field imaging with dense spatial sampling. Its system is identical to a standard bright-field microscope with a lamp and a camera – no laser or interferometry is needed. In a parallel fashion, PANORAMA can detect, count and size individual dielectric nanoparticles beyond 25 nm, and dynamically monitor their distance to the plasmonic surface at millisecond timescale.


2002 ◽  
Vol 7 (2) ◽  
pp. 45-52
Author(s):  
L. Jakučionis ◽  
V. Kleiza

Electrical properties of conductive thin films, that are produced by vacuum evaporation on the dielectric substrates, and which properties depend on their thickness, usually are anisotropic i.e. they have uniaxial anisotropy. If the condensate grow on dielectric substrates on which plane electrical field E is created the transverse voltage U⊥ appears on the boundary of the film in the direction perpendicular to E. Transverse voltage U⊥ depends on the angle γ between the applied magnetic field H and axis of light magnetisation. When electric field E is applied to continuous or grid layers, U⊥ and resistance R of layers are changed by changing γ. It means that value of U⊥ is the measure of anisotropy magnitude. Increasing voltage U0 , which is created by E, U⊥ increases to certain magnitude and later decreases. The anisotropy of continuous thin layers is excited by inequality of conductivity tensor components σ0 ≠ σ⊥. The reason of anisotropy is explained by the model which shows that properties of grain boundaries are defined by unequal probability of transient of charge carrier.


2018 ◽  
Vol 114 (3) ◽  
pp. 504a-505a
Author(s):  
Mohammed Mahamdeh ◽  
Steve Simmert ◽  
Anna Łuchniak ◽  
Erik Schäffer ◽  
Jonathon Howard

2009 ◽  
Vol 625 ◽  
pp. 435-443 ◽  
Author(s):  
MARK A. KELMANSON

A novel pseudo-three-timescale asymptotic procedure is developed and implemented for obtaining accurate approximations to solutions of an evolution equation arising in thin-film free-surface viscous flow. The new procedure, which employs strained fast and slow timescales, requires considerably fewer calculations than its standard three-timescale counterpart employing fast, slow and slower timescales and may readily be applied to other evolution equations of fluid mechanics possessing wave-like solutions exhibiting exponential decay in amplitude and variations in phase over disparate timescales. The new method is validated on the evolution of free-surface waves on a thin, viscous film coating the exterior of a horizontal rotating cylinder and is shown to yield accurate solutions up to non-dimensional times exceeding by an order of magnitude those of previous related studies. Results of the new method applied to this test problem are demonstrated to be in excellent agreement, over large timescales, with those of corroborative spectrally accurate numerical integrations.


Sign in / Sign up

Export Citation Format

Share Document