scholarly journals Enhanced North American carbon uptake associated with El Niño

2019 ◽  
Vol 5 (6) ◽  
pp. eaaw0076 ◽  
Author(s):  
Lei Hu ◽  
Arlyn E. Andrews ◽  
Kirk W. Thoning ◽  
Colm Sweeney ◽  
John B. Miller ◽  
...  

Long-term atmospheric CO2mole fraction and δ13CO2observations over North America document persistent responses to the El Niño–Southern Oscillation. We estimate these responses corresponded to 0.61 (0.45 to 0.79) PgC year−1more North American carbon uptake during El Niño than during La Niña between 2007 and 2015, partially offsetting increases of net tropical biosphere-to-atmosphere carbon flux around El Niño. Anomalies in derived North American net ecosystem exchange (NEE) display strong but opposite correlations with surface air temperature between seasons, while their correlation with water availability was more constant throughout the year, such that water availability is the dominant control on annual NEE variability over North America. These results suggest that increased water availability and favorable temperature conditions (warmer spring and cooler summer) caused enhanced carbon uptake over North America near and during El Niño.

2021 ◽  
Vol 9 ◽  
Author(s):  
Xin Zhou ◽  
Quanliang Chen ◽  
Yang Li ◽  
Yawei Yang ◽  
Shaobo Zhang ◽  
...  

The stratospheric pathway is a major driver of El Niño–Southern Oscillation (ENSO) impacts on mid-latitude tropospheric circulation and winter weather. The weak vortex induced by El Niño conditions has been shown to increase the risk of cold spells, especially over Eurasia, but its role for North American winters is less clear. This study involved idealized experiments with the Whole Atmosphere Community Climate Model to examine how the weak winter vortex induced by extreme El Niño events is linked to North American coldness in spring. Contrary to the expected mid-latitude cooling associated with a weak vortex, extreme El Niño events do not lead to North American cooling overall, with daily cold extremes actually decreasing, especially in Canada. The expected cooling is absent in most of North America because of the advection of warmer air masses guided by an enhanced ridge over Canada and a trough over the Aleutian Peninsula. This pattern persists in spring as a result of the trapping of stationary waves from the polar stratosphere and troposphere, implying that the stratospheric influence on North America is sensitive to regional downward wave activities.


2010 ◽  
Vol 23 (11) ◽  
pp. 2902-2915 ◽  
Author(s):  
Xuebin Zhang ◽  
Jiafeng Wang ◽  
Francis W. Zwiers ◽  
Pavel Ya Groisman

Abstract The generalized extreme value (GEV) distribution is fitted to winter season daily maximum precipitation over North America, with indices representing El Niño–Southern Oscillation (ENSO), the Pacific decadal oscillation (PDO), and the North Atlantic Oscillation (NAO) as predictors. It was found that ENSO and PDO have spatially consistent and statistically significant influences on extreme precipitation, while the influence of NAO is regional and is not field significant. The spatial pattern of extreme precipitation response to large-scale climate variability is similar to that of total precipitation but somewhat weaker in terms of statistical significance. An El Niño condition or high phase of PDO corresponds to a substantially increased likelihood of extreme precipitation over a vast region of southern North America but a decreased likelihood of extreme precipitation in the north, especially in the Great Plains and Canadian prairies and the Great Lakes/Ohio River valley.


2016 ◽  
Vol 29 (4) ◽  
pp. 1325-1338 ◽  
Author(s):  
A. Meyer ◽  
D. Folini ◽  
U. Lohmann ◽  
T. Peter

Abstract Tropical land mean surface air temperature and precipitation responses to the eruptions of El Chichón in 1982 and Pinatubo in 1991, as simulated by the atmosphere-only GCMs (AMIP) in phase 5 of the Coupled Model Intercomparison Project (CMIP5), are examined and compared to three observational datasets. The El Niño–Southern Oscillation (ENSO) signal was statistically separated from the volcanic signal in all time series. Focusing on the ENSO signal, it was found that the 17 investigated AMIP models successfully simulate the observed 4-month delay in the temperature responses to the ENSO phase but simulate somewhat too-fast precipitation responses during the El Niño onset stage. The observed correlation between temperature and ENSO phase (correlation coefficient of 0.75) is generally captured well by the models (simulated correlation of 0.71 and ensemble means of 0.61–0.83). For precipitation, mean correlations with the ENSO phase are −0.59 for observations and −0.53 for the models, with individual ensemble members having correlations as low as −0.26. Observed, ENSO-removed tropical land temperature and precipitation decrease by about 0.35 K and 0.25 mm day−1 after the Pinatubo eruption, while no significant decrease in either variable was observed after El Chichón. The AMIP models generally capture this behavior despite a tendency to overestimate the precipitation response to El Chichón. Scatter is substantial, both across models and across ensemble members of individual models. Natural variability thus may still play a prominent role despite the strong volcanic forcing.


2021 ◽  
Author(s):  
Yao Ge ◽  
Dehai Luo

Abstract In recent years, the winter (from December to February, DJF) North American surface air temperature (SAT) anomaly in midlatitudes shows a “warm west/cold east” (WWCE) dipole pattern. To some extent, the winter WWCE dipole can be considered as being a result of the winter mean of sub-seasonal WWCE events. In this paper, the Pacific SST condition linked to the sub-seasonal WWCE SAT dipole is investigated. It is found that while the sub-seasonal WWCE dipole is related to the positive Pacific North American (PNA+) pattern, the impact of the PNA+ on the WWCE dipole depends on the El Niño SST type and the phase of Pacific decadal Oscillation (PDO). For a central-Pacific (CP) type El Niño, the positive (negative) height anomaly center of PNA+ is located in the west (east) part of North America to result in an intensified WWCE dipole, though the positive PDO favors the WWCE dipole. In contrast, the WWCE dipole is suppressed under an Eastern-Pacific (EP) type El Niño because the PNA+ anticyclonic anomaly dominates the whole North America.Moreover, the physical cause of why the type of El Niño influences the PNA+ is further examined. It is found that the type of El Niño can significantly influence the location of PNA+ through changing North Pacific midlatitude westerly winds (NPWWs). For the CP-type El Niño, the eastward migration of PNA+ is suppressed to favor its anticyclonic (cyclonic) anomaly appearing in the west (east) region of North American owing to reduced NPWWs. But for the EP-type El Niño, NPWWs are intensified to cause the appearance of the PNA+ anticyclonic anomaly over the whole North America due to enhanced Hadley cell and Ferrell cell.


2020 ◽  
Vol 33 (15) ◽  
pp. 6531-6554
Author(s):  
Ryan Lagerquist ◽  
John T. Allen ◽  
Amy McGovern

AbstractThis paper describes the development and analysis of an objective climatology of warm and cold fronts over North America from 1979 to 2018. Fronts are detected by a convolutional neural network (CNN), trained to emulate fronts drawn by human meteorologists. Predictors for the CNN are surface and 850-hPa fields of temperature, specific humidity, and vector wind from the ERA5 reanalysis. Gridded probabilities from the CNN are converted to 2D frontal regions, which are used to create the climatology. Overall, warm and cold fronts are most common in the Pacific and Atlantic cyclone tracks and the lee of the Rockies. In contrast with prior research, we find that the activity of warm and cold fronts is significantly modulated by the phase and intensity of El Niño–Southern Oscillation. The influence of El Niño is significant for winter warm fronts, winter cold fronts, and spring cold fronts, with activity decreasing over the continental United States and shifting northward with the Pacific and Atlantic cyclone tracks. Long-term trends are generally not significant, although we find a poleward shift in frontal activity during the winter and spring, consistent with prior research. We also identify a number of regional patterns, such as a significant long-term increase in warm fronts in the eastern tropical Pacific Ocean, which are characterized almost entirely by moisture gradients rather than temperature gradients.


2020 ◽  
Author(s):  
Yao Ge ◽  
Dehai Luo

<p><strong> </strong></p><p>In recent years, the surface air temperature (SAT) anomalies in winter over North America show a “warm-West/cool-East” (WWCE) dipole pattern. The underlying mechanism of the North American WWCE dipole pattern has been an important research topic. This study examines the physical cause of the WWCE dipole generation.</p><p>It is found that the positive phase (PNA<sup>+</sup>) of the Pacific North American (PNA) pattern can lead to the generation of the WWCE SAT dipole. However, the impact of the PNA<sup>+ </sup>on the WWCE SAT dipole over North America depends on the type of the El Nino SST anomaly. When an Eastern-Pacific (EP) type El Nino occurs, the anticyclonic anomaly center of the PNA<sup>+ </sup>over the North American continent is displaced eastward near 100°W due to intensified midlatitude westerly winds over North Pacific so that its anticyclonic anomaly dominates the whole North America. In this case, the cyclonic anomaly of the PNA<sup>+</sup> almost disappears over the North America. Thus, the WWCE SAT dipole over the North America is weakened. In contrast, when a central-Pacific (CP) type El Nino appears, the anticyclonic anomaly center of the associated PNA<sup>+</sup> is located over the North America west coast due to reduced midlatitude westerly winds over North Pacific. As a result, the cyclonic anomaly of the PNA<sup>+</sup> can appear over the east United States to result in an intensified WWCE SAT dipole over the North America</p>


2013 ◽  
Vol 26 (3) ◽  
pp. 838-850 ◽  
Author(s):  
Lydia Stefanova ◽  
Philip Sura ◽  
Melissa Griffin

Abstract In this paper the statistics of daily maximum and minimum surface air temperature at weather stations in the southeast United States are examined as a function of the El Niño–Southern Oscillation (ENSO) and Arctic Oscillation (AO) phase. A limited number of studies address how the ENSO and/or AO affect U.S. daily—as opposed to monthly or seasonal—temperature averages. The details of the effect of the ENSO or AO on the higher-order statistics for wintertime daily minimum and maximum temperatures have not been clearly documented. Quality-controlled daily observations collected from 1960 to 2009 from 272 National Weather Service Cooperative Observing Network stations throughout Florida, Georgia, Alabama, and South and North Carolina are used to calculate the first four statistical moments of minimum and maximum daily temperature distributions. It is found that, over the U.S. Southeast, winter minimum temperatures have higher variability than maximum temperatures and La Niña winters have greater variability of both minimum and maximum temperatures. With the exception of the Florida peninsula, minimum temperatures are positively skewed, while maximum temperatures are negatively skewed. Stations in peninsular Florida exhibit negative skewness for both maximum and minimum temperatures. During the relatively warmer winters associated with either a La Niña or AO+, negative skewnesses are exacerbated and positive skewnesses are reduced. To a lesser extent, the converse is true of the El Niño and AO−. The ENSO and AO are also shown to have a statistically significant effect on the change in kurtosis of daily maximum and minimum temperatures throughout the domain.


2006 ◽  
Vol 6 ◽  
pp. 149-153 ◽  
Author(s):  
A. Shabbar

Abstract. The quasi-periodic El Niño -Southern Oscillation (ENSO) phenomenon in the tropical Pacific Ocean produces the largest interannual variation in the cold season climate of Canada. The diabatic heating in the eastern tropical Pacific, associated with the warm phase of ENSO (El Niño), triggers Rossby waves which in turn gives rise to the Pacific-North American teleconnection (PNA) over the North American sector. The strongest cell of the PNA pattern lies over western Canada. In most of southern Canada, mean winter temperature distribution is shifted towards warmer values, and precipitation is below normal. The presence of El Niño provides the best opportunity to make skillful long-range winter forecast for Canada. A strong El Niño event, while bringing respite from the otherwise cold winter in Canada, can be expected to cost the Canadian economy two to five billion dollars.


Atmosphere ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1443
Author(s):  
Ilya V. Serykh ◽  
Dmitry M. Sonechkin

The interannual variability of the global mean monthly anomalies of near-surface air temperature, sea-level pressure, wind speed near the surface, amount of precipitation and total cloudiness was investigated. The amplitudes of the anomalies of these hydrometeorological characteristics between opposite phases of the Global Atmospheric Oscillation (GAO) were calculated. The regional element of the GAO in the tropics of the Indian and Pacific Oceans is the Southern Oscillation. The results show that the oscillations of these characteristics are associated with the GAO not only in the tropical belt of the Earth but also in the middle and high latitudes, especially in the Arctic and northern Eurasia. The physical mechanism by which the transition of the GAO from the negative to the positive phase influences the weakening of the Pacific trade winds, and, as a consequence, the onset of El Niño is described.


Sign in / Sign up

Export Citation Format

Share Document