scholarly journals Chemical boundary engineering: A new route toward lean, ultrastrong yet ductile steels

2020 ◽  
Vol 6 (13) ◽  
pp. eaay1430 ◽  
Author(s):  
Ran Ding ◽  
Yingjie Yao ◽  
Binhan Sun ◽  
Geng Liu ◽  
Jianguo He ◽  
...  

For decades, grain boundary engineering has proven to be one of the most effective approaches for tailoring the mechanical properties of metallic materials, although there are limits to the fineness and types of microstructures achievable, due to the rapid increase in grain size once being exposed to thermal loads (low thermal stability of crystallographic boundaries). Here, we deploy a unique chemical boundary engineering (CBE) approach, augmenting the variety in available alloy design strategies, which enables us to create a material with an ultrafine hierarchically heterogeneous microstructure even after heating to high temperatures. When applied to plain steels with carbon content of only up to 0.2 weight %, this approach yields ultimate strength levels beyond 2.0 GPa in combination with good ductility (>20%). Although demonstrated here for plain carbon steels, the CBE design approach is, in principle, applicable also to other alloys.

1991 ◽  
Vol 238 ◽  
Author(s):  
A. M. El-Sherik ◽  
K. Boylan ◽  
U. Erb ◽  
G. Palumbo ◽  
K. T. Aust

ABSTRACTThe thermal stability of electrodeposited nanocrystalline Ni-1.2%P and Ni-0.12%S alloys is evaluated by in-situ electron microscopy studies. Isothermal grain size versus annealing time curves at 573K and 623K show an unexpected thermal stabilization in form of a transition from rapid initial grain growth to negligible grain growth. This behaviour is discussed in terms of the various grain boundary drag mechanisms which may be operative in these alloys.


2016 ◽  
Vol 877 ◽  
pp. 211-217 ◽  
Author(s):  
Xiao Lan Wu ◽  
Zuo Ren Nie ◽  
Sheng Ping Wen ◽  
Kun Yuan Gao ◽  
Hui Huang

Erbium is an effective micro-alloying element in aluminum alloys and has been investigated intensively. Similar with the addition of Sc in aluminum alloys, nanosized L12-ordered Al3Er precipitates were formed coherently with the matrix in Er-containing micro-alloying aluminum alloys. Further, in the case of the addition of both Er and Zr, core-shell-structured Al3(ZrxEr1−x) precipitates, instead of Al3Er, were observed in a fine dispersion. Those thermally-stable precipitates can refine the grain size, minimize the segregation, homogenize the microstructure, enhance the strength, hinder the recrystallization, and thus improve the comprehensive performance of the aluminum alloys. This paper presents the effect of Er on the microstructure, mechanical properties and thermal stability of aluminum alloys. The research of some typical commercial aluminum alloys containing Er, is also reviewed here.


2010 ◽  
Vol 24 (01n02) ◽  
pp. 51-56
Author(s):  
TAKASHI INANMI ◽  
MAMORU KOBIYAMA ◽  
HIROSHI MAETA ◽  
MASATO SASASE ◽  
NORITO ISHIKAWA ◽  
...  

Specimens of nanocrystalline pure gold were prepared by the gas deposition method. The formation of helium bubbles in the specimens and their annealing behavior were studied in order to confirm their effect on thermal stabilities of grain size and mechanical properties. The specimens with 10-25nm mean grain size were analyzed by transmission electron microscopy and X-ray diffraction methods. Spherical helium bubbles, about 5nm in diameter, were formed, the same as in the case of helium ion implantation. After annealing at 573K for 1h in vacuum, most of the bubbles had not disappeared and some were trapped at the grain boundaries. Larger numbers of bubbles were trapped at grain boundaries in the specimens with high thermal stability than for low thermal stability specimens. Helium bubbles trapped at grain boundaries can be considered as local barriers to grain growth and to contribute to thermal stability of mechanical properties.


2004 ◽  
Vol 261-263 ◽  
pp. 999-1004 ◽  
Author(s):  
Sadahiro Tsurekawa ◽  
Tadao Watanabe ◽  
N. Tamari

Grain boundary engineering (GBE) is rapidly emerging recently as a powerful tool for achieving enhanced properties and performance in polycrystalline metallic materials. The objective of this work is to confirm the potential of GBE for enhancement in properties and performance in ceramic materials such as silicon carbide (SiC). Grain boundary microstructure in SiC could be tailored by doping with different elements (Mg, Al and P) and modifying sintering processing (hot-pressing and spark plasma sintering). FEG-SEM/OIM analyses revealed that both Al doping and SPS increased the frequency of low-energy special boundaries (Σ ≤29 ) and Mg doping enhanced grain growth. It was found that mechanical properties like microhardness depended on the grain boundary character distribution (GBCD) and the grain size. The increment in the frequency of special boundaries could yield increases in the Vickers-microhardness and the fracture stress. Furthermore, intergranular oxidation-induced brittleness in SiC was noticeably improved by increase in the frequency of special boundaries and decrease in the grain size. Thus, we have confirmed that the control of grain boundary microstructure such as grain size, GBCD and grain boundary connectivity is a key for enhancement in bulk properties and performance in ceramic materials.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2903
Author(s):  
Juvenal Giogetti Nemaleu Deutou ◽  
Rodrigue Cyriaque Kaze ◽  
Elie Kamseu ◽  
Vincenzo M. Sglavo

The present project investigated the thermal stability of cold-setting refractory composites under high-temperature cycles. The proposed route dealt with the feasibility of using fillers with different particle sizes and studying their influence on the thermo-mechanical properties of refractory geopolymer composites. The volumetric shrinkage was studied with respect to particle sizes of fillers (80, 200 and 500 µm), treatment temperature (1050–1250 °C) and amount of fillers (70–85 wt.%). The results, combined with thermal analysis, indicated the efficiency of refractory-based kyanite aggregates for enhancing thermo-mechanical properties. At low temperatures, larger amounts of kyanite aggregates promoted mechanical strength development. Flexural strengths of 45, 42 and 40 MPa were obtained for geopolymer samples, respectively, at 1200 °C, made with filler particles sieved at 80, 200 and 500 µm. In addition, a sintering temperature equal to 1200 °C appeared beneficial for the promotion of densification as well as bonding between kyanite aggregates and the matrix, contributing to the reinforcement of the refractory geopolymer composites without any sign of vitrification. From the obtained properties of thermal stability, good densification and high strength, kyanite aggregates are efficient and promising candidates for the production of environmentally friendly, castable refractory composites.


Vacuum ◽  
2021 ◽  
Vol 188 ◽  
pp. 110182
Author(s):  
Jian Zhou ◽  
Chun Hu ◽  
Li Chen

2001 ◽  
Vol 670 ◽  
Author(s):  
Min-Joo Kim ◽  
Hyo-Jick Choi ◽  
Dae-Hong Ko ◽  
Ja-Hum Ku ◽  
Siyoung Choi ◽  
...  

ABSTRACTThe silicidation reactions and thermal stability of Co silicide formed from Co-Ta/Si systems have been investigated. In case of Co-Ta alloy process, the formation of low resistive CoSi2phase is delayed to about 660°C, as compared to conventional Co/Si system. Moreover, the presence of Ta in Co-Ta alloy films reduces the silicidation reaction rate, resulting in the strong preferential orientation in CoSi2 films. Upon high temperature post annealing in the furnace, the sheet resistance of Co-silicide formed from Co/Si systems increases significantly, while that of Co-Ta/Si systems maintains low. This is due to the formation of TaSi2 at the grain boundaries and surface of Co-silicide films, which prevents the grain boundary migration thereby slowing the agglomeration. Therefore, from our research, increased thermal stability of Co-silicide films was successfully obtained from Co-Ta alloy process.


Sign in / Sign up

Export Citation Format

Share Document