scholarly journals AI Feynman: A physics-inspired method for symbolic regression

2020 ◽  
Vol 6 (16) ◽  
pp. eaay2631 ◽  
Author(s):  
Silviu-Marian Udrescu ◽  
Max Tegmark

A core challenge for both physics and artificial intelligence (AI) is symbolic regression: finding a symbolic expression that matches data from an unknown function. Although this problem is likely to be NP-hard in principle, functions of practical interest often exhibit symmetries, separability, compositionality, and other simplifying properties. In this spirit, we develop a recursive multidimensional symbolic regression algorithm that combines neural network fitting with a suite of physics-inspired techniques. We apply it to 100 equations from the Feynman Lectures on Physics, and it discovers all of them, while previous publicly available software cracks only 71; for a more difficult physics-based test set, we improve the state-of-the-art success rate from 15 to 90%.

2021 ◽  
Author(s):  
Kai Guo ◽  
Zhenze Yang ◽  
Chi-Hua Yu ◽  
Markus J. Buehler

This review revisits the state of the art of research efforts on the design of mechanical materials using machine learning.


Author(s):  
Mauro Vallati ◽  
Lukáš Chrpa ◽  
Thomas L. Mccluskey

AbstractThe International Planning Competition (IPC) is a prominent event of the artificial intelligence planning community that has been organized since 1998; it aims at fostering the development and comparison of planning approaches, assessing the state-of-the-art in planning and identifying new challenging benchmarks. IPC has a strong impact also outside the planning community, by providing a large number of ready-to-use planning engines and testing pioneering applications of planning techniques.This paper focusses on the deterministic part of IPC 2014, and describes format, participants, benchmarks as well as a thorough analysis of the results. Generally, results of the competition indicates some significant progress, but they also highlight issues and challenges that the planning community will have to face in the future.


2020 ◽  
Vol 6 (2) ◽  
pp. 135-161
Author(s):  
Diego Alejandro Borbón Rodríguez ◽  
◽  
Luisa Fernanda Borbón Rodríguez ◽  
Jeniffer Laverde Pinzón

Advances in neurotechnologies and artificial intelligence have led to an innovative proposal to establish ethical and legal limits to the development of technologies: Human NeuroRights. In this sense, the article addresses, first, some advances in neurotechnologies and artificial intelligence, as well as their ethical implications. Second, the state of the art on the innovative proposal of Human NeuroRights is exposed, specifically, the proposal of the NeuroRights Initiative of Columbia University. Third, the proposal for the rights of free will and equitable access to augmentation technologies is critically analyzed to conclude that, although it is necessary to propose new regulations for neurotechnologies and artificial intelligence, the debate is still very premature as if to try to incorporate a new category of human rights that may be inconvenient or unnecessary. Finally, some considerations on how to regulate new technologies are explained and the conclusions of the work are presented.


Author(s):  
FRANCK LECLERC ◽  
RÉJEAN PLAMONDON

This paper is a follow up to an article published in 1989 by R. Plamondon and G. Lorette on the state of the art in automatic signature verification and writer identification. It summarizes the activity from year 1989 to 1993 in automatic signature verification. For this purpose, we report on the different projects dealing with dynamic, static and neural network approaches. In each section, a brief description of the major investigations is given.


2021 ◽  
Author(s):  
Muhammad Shahroz Nadeem ◽  
Sibt Hussain ◽  
Fatih Kurugollu

This paper solves the textual deblurring problem, In this paper we propose a new loss function, we provide empirical evaluation of the design choices based on which a memory friendly CNN model is proposed, that performs better then the state of the art CNN method.


Author(s):  
Chenggang Yan ◽  
Tong Teng ◽  
Yutao Liu ◽  
Yongbing Zhang ◽  
Haoqian Wang ◽  
...  

The difficulty of no-reference image quality assessment (NR IQA) often lies in the lack of knowledge about the distortion in the image, which makes quality assessment blind and thus inefficient. To tackle such issue, in this article, we propose a novel scheme for precise NR IQA, which includes two successive steps, i.e., distortion identification and targeted quality evaluation. In the first step, we employ the well-known Inception-ResNet-v2 neural network to train a classifier that classifies the possible distortion in the image into the four most common distortion types, i.e., Gaussian white noise (WN), Gaussian blur (GB), jpeg compression (JPEG), and jpeg2000 compression (JP2K). Specifically, the deep neural network is trained on the large-scale Waterloo Exploration database, which ensures the robustness and high performance of distortion classification. In the second step, after determining the distortion type of the image, we then design a specific approach to quantify the image distortion level, which can estimate the image quality specially and more precisely. Extensive experiments performed on LIVE, TID2013, CSIQ, and Waterloo Exploration databases demonstrate that (1) the accuracy of our distortion classification is higher than that of the state-of-the-art distortion classification methods, and (2) the proposed NR IQA method outperforms the state-of-the-art NR IQA methods in quantifying the image quality.


Author(s):  
Jianwen Jiang ◽  
Di Bao ◽  
Ziqiang Chen ◽  
Xibin Zhao ◽  
Yue Gao

3D shape retrieval has attracted much attention and become a hot topic in computer vision field recently.With the development of deep learning, 3D shape retrieval has also made great progress and many view-based methods have been introduced in recent years. However, how to represent 3D shapes better is still a challenging problem. At the same time, the intrinsic hierarchical associations among views still have not been well utilized. In order to tackle these problems, in this paper, we propose a multi-loop-view convolutional neural network (MLVCNN) framework for 3D shape retrieval. In this method, multiple groups of views are extracted from different loop directions first. Given these multiple loop views, the proposed MLVCNN framework introduces a hierarchical view-loop-shape architecture, i.e., the view level, the loop level, and the shape level, to conduct 3D shape representation from different scales. In the view-level, a convolutional neural network is first trained to extract view features. Then, the proposed Loop Normalization and LSTM are utilized for each loop of view to generate the loop-level features, which considering the intrinsic associations of the different views in the same loop. Finally, all the loop-level descriptors are combined into a shape-level descriptor for 3D shape representation, which is used for 3D shape retrieval. Our proposed method has been evaluated on the public 3D shape benchmark, i.e., ModelNet40. Experiments and comparisons with the state-of-the-art methods show that the proposed MLVCNN method can achieve significant performance improvement on 3D shape retrieval tasks. Our MLVCNN outperforms the state-of-the-art methods by the mAP of 4.84% in 3D shape retrieval task. We have also evaluated the performance of the proposed method on the 3D shape classification task where MLVCNN also achieves superior performance compared with recent methods.


2020 ◽  
Vol 10 (2) ◽  
pp. 84 ◽  
Author(s):  
Atif Mehmood ◽  
Muazzam Maqsood ◽  
Muzaffar Bashir ◽  
Yang Shuyuan

Alzheimer’s disease (AD) may cause damage to the memory cells permanently, which results in the form of dementia. The diagnosis of Alzheimer’s disease at an early stage is a problematic task for researchers. For this, machine learning and deep convolutional neural network (CNN) based approaches are readily available to solve various problems related to brain image data analysis. In clinical research, magnetic resonance imaging (MRI) is used to diagnose AD. For accurate classification of dementia stages, we need highly discriminative features obtained from MRI images. Recently advanced deep CNN-based models successfully proved their accuracy. However, due to a smaller number of image samples available in the datasets, there exist problems of over-fitting hindering the performance of deep learning approaches. In this research, we developed a Siamese convolutional neural network (SCNN) model inspired by VGG-16 (also called Oxford Net) to classify dementia stages. In our approach, we extend the insufficient and imbalanced data by using augmentation approaches. Experiments are performed on a publicly available dataset open access series of imaging studies (OASIS), by using the proposed approach, an excellent test accuracy of 99.05% is achieved for the classification of dementia stages. We compared our model with the state-of-the-art models and discovered that the proposed model outperformed the state-of-the-art models in terms of performance, efficiency, and accuracy.


2020 ◽  
Vol 32 (4) ◽  
pp. 849-868 ◽  
Author(s):  
Mauro Cavallone ◽  
Rocco Palumbo

PurposeIndustry 4.0, artificial intelligence and digitalization have got a momentum in health care. However, scholars and practitioners do not agree on their implications on health services' quality and effectiveness. The article aims at shedding light on the applications, aftermaths and drawbacks of industry 4.0 in health care, summarizing the state of the art.Design/methodology/approachA systematic literature review was undertaken. We arranged an ad hoc research design, which was tailored to the study purposes. Three citation databases were queried. We collected 1,194 scientific papers which were carefully considered for inclusion in this systematic literature review. After three rounds of analysis, 40 papers were taken into consideration.FindingsIndustry 4.0, artificial intelligence and digitalization are revolutionizing the design and the delivery of care. They are expected to enhance health services' quality and effectiveness, paving the way for more direct patient–provider relationships. In addition, they have been argued to allow a more appropriate use of available resources. There is a dark side of health care 4.0 involving both management and ethical issues.Research limitations/implicationsIndustry 4.0 in health care should not be conceived as a self-nourishing innovation; rather, it needs to be carefully steered at both the policy and management levels. On the one hand, comprehensive governance models are required to realize the full potential of health 4.0. On the other hand, the drawbacks of industry 4.0 should be timely recognized and thoroughly addressed.Originality/valueThe article contextualizes the state of the art of industry 4.0 in the health care context, providing some insights for further conceptual and empirical developments.


Sign in / Sign up

Export Citation Format

Share Document