scholarly journals TRPC1 participates in the HSV-1 infection process by facilitating viral entry

2020 ◽  
Vol 6 (12) ◽  
pp. eaaz3367 ◽  
Author(s):  
DongXu He ◽  
AiQin Mao ◽  
YouRan Li ◽  
SiuCheung Tam ◽  
YongTang Zheng ◽  
...  

Mammalian transient receptor potential (TRP) channels are major components of Ca2+ signaling pathways and control a diversity of physiological functions. Here, we report a specific role for TRPC1 in the entry of herpes simplex virus type 1 (HSV-1) into cells. HSV-1–induced Ca2+ release and entry were dependent on Orai1, STIM1, and TRPC1. Inhibition of Ca2+ entry or knockdown of these proteins attenuated viral entry and infection. HSV-1 glycoprotein D interacted with the third ectodomain of TRPC1, and this interaction facilitated viral entry. Knockout of TRPC1 attenuated HSV-1–induced ocular abnormality and morbidity in vivo in TRPC1−/− mice. There was a strong correlation between HSV-1 infection and plasma membrane localization of TRPC1 in epithelial cells within oral lesions in buccal biopsies from HSV-1–infected patients. Together, our findings demonstrate a critical role for TRPC1 in HSV-1 infection and suggest the channel as a potential target for anti-HSV therapy.

Cancers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 668
Author(s):  
Concetta Altamura ◽  
Maria Raffaella Greco ◽  
Maria Rosaria Carratù ◽  
Rosa Angela Cardone ◽  
Jean-François Desaphy

Ovarian cancer (OC) is the deadliest gynecologic cancer, due to late diagnosis, development of platinum resistance, and inadequate alternative therapy. It has been demonstrated that membrane ion channels play important roles in cancer processes, including cell proliferation, apoptosis, motility, and invasion. Here, we review the contribution of ion channels in the development and progression of OC, evaluating their potential in clinical management. Increased expression of voltage-gated and epithelial sodium channels has been detected in OC cells and tissues and shown to be involved in cancer proliferation and invasion. Potassium and calcium channels have been found to play a critical role in the control of cell cycle and in the resistance to apoptosis, promoting tumor growth and recurrence. Overexpression of chloride and transient receptor potential channels was found both in vitro and in vivo, supporting their contribution to OC. Furthermore, ion channels have been shown to influence the sensitivity of OC cells to neoplastic drugs, suggesting a critical role in chemotherapy resistance. The study of ion channels expression and function in OC can improve our understanding of pathophysiology and pave the way for identifying ion channels as potential targets for tumor diagnosis and treatment.


2014 ◽  
Vol 34 (10) ◽  
pp. 1706-1714 ◽  
Author(s):  
Yao Li ◽  
Rachael L Baylie ◽  
Matthew J Tavares ◽  
Joseph E Brayden

Cerebral parenchymal arterioles (PAs) have a critical role in assuring appropriate blood flow and perfusion pressure within the brain. They are unique in contrast to upstream pial arteries, as defined by their critical roles in neurovascular coupling, distinct sensitivities to chemical stimulants, and enhanced myogenic tone development. The objective of the present study was to reveal some of the unique mechanisms of myogenic tone regulation in the cerebral microcirculation. Here, we report that in vivo suppression of TRPM4 (transient receptor potential) channel expression, or inhibition of TRPM4 channels with 9-phenanthrol substantially reduced myogenic tone of isolated PAs, supporting a key role of TRPM4 channels in PA myogenic tone development. Further, downregulation of TRPM4 channels inhibited vasoconstriction induced by the specific P2Y4 and P2Y6 receptor ligands (UTP γS and UDP) by 37% and 42%, respectively. In addition, 9-phenanthrol substantially attenuated purinergic ligand-induced membrane depolarization and constriction of PAs, and inhibited ligand-evoked TRPM4 channel activation in isolated PA myocytes. In concert with our previous work showing the essential contributions of P2Y4 and P2Y6 receptors to myogenic regulation of PAs, the current results point to TRPM4 channels as an important link between mechanosensitive P2Y receptor activation and myogenic constriction of cerebral PAs.


2013 ◽  
Vol 304 (4) ◽  
pp. G428-G436 ◽  
Author(s):  
Toru Kono ◽  
Atsushi Kaneko ◽  
Yuji Omiya ◽  
Katsuya Ohbuchi ◽  
Nagisa Ohno ◽  
...  

The functional roles of transient receptor potential (TRP) channels in the gastrointestinal tract have garnered considerable attention in recent years. We previously reported that daikenchuto (TU-100), a traditional Japanese herbal medicine, increased intestinal blood flow (IBF) via adrenomedullin (ADM) release from intestinal epithelial (IE) cells (Kono T et al. J Crohns Colitis 4: 161–170, 2010). TU-100 contains multiple TRP activators. In the present study, therefore, we examined the involvement of TRP channels in the ADM-mediated vasodilatatory effect of TU-100. Rats were treated intraduodenally with the TRP vanilloid type 1 (TRPV1) agonist capsaicin (CAP), the TRP ankyrin 1 (TRPA1) agonist allyl-isothiocyanate (AITC), or TU-100, and jejunum IBF was evaluated using laser-Doppler blood flowmetry. All three compounds resulted in vasodilatation, and the vasodilatory effect of TU-100 was abolished by a TRPA1 antagonist but not by a TRPV1 antagonist. Vasodilatation induced by AITC and TU-100 was abrogated by anti-ADM antibody treatment. RT-PCR and flow cytometry revealed that an IEC-6 cell line originated from the small intestine and purified IE cells expressed ADM and TRPA1 but not TRPV1. AITC increased ADM release in IEC cells remarkably, while CAP had no effect. TU-100 and its ingredient 6-shogaol (6SG) increased ADM release dose-dependently, and the effects were abrogated by a TRPA1 antagonist. 6SG showed similar TRPA1-dependent vasodilatation in vivo. These results indicate that TRPA1 in IE cells may play an important role in controlling bowel microcirculation via ADM release. Epithelial TRPA1 appears to be a promising target for the development of novel strategies for the treatment of various gastrointestinal disorders.


2009 ◽  
Vol 84 (1) ◽  
pp. 153-162 ◽  
Author(s):  
Takahiko Imai ◽  
Ken Sagou ◽  
Jun Arii ◽  
Yasushi Kawaguchi

ABSTRACT We recently reported that the herpes simplex virus 1 (HSV-1) Us3 protein kinase phosphorylates threonine at position 887 (Thr-887) in the cytoplasmic tail of envelope glycoprotein B (gB) (A. Kato, J. Arii, I. Shiratori, H. Akashi, H. Arase, and Y. Kawaguchi, J. Virol. 83:250-261, 2009; T. Wisner, C. C. Wright, A. Kato, Y. Kawaguchi, F. Mou, J. D. Baines, R. J. Roller and D. C. Johnson, J. Virol. 83:3115-3126, 2009). In the studies reported here, we examined the effect(s) of this phosphorylation on viral replication and pathogenesis in vivo and present data showing that replacement of gB Thr-887 by alanine significantly reduced viral replication in the mouse cornea and development of herpes stroma keratitis and periocular skin disease in mice. The same effects have been reported for mice infected with a recombinant HSV-1 carrying a kinase-inactive mutant of Us3. These observations suggested that Us3 phosphorylation of gB Thr-887 played a critical role in viral replication in vivo and in HSV-1 pathogenesis. In addition, we generated a monoclonal antibody that specifically reacted with phosphorylated gB Thr-887 and used this antibody to show that Us3 phosphorylation of gB Thr-887 regulated subcellular localization of gB, particularly on the cell surface of infected cells.


2021 ◽  
Vol 12 ◽  
Author(s):  
Alessandro Leuti ◽  
Marina Fava ◽  
Niccolò Pellegrini ◽  
Mauro Maccarrone

Inflammation and neuroinflammation are critical mechanisms in the generation of neuropathic pain that is experienced in several chronic diseases. The aberrant inflammation that triggers this pathophysiologic process can be tracked down to an exacerbated immune response, which establishes a vicious cycle and continuously recruits inflammatory cells by inducing chronic tissue damage. Recently, impairment of the cellular and molecular machinery orchestrated by specialized pro-resolving mediators (SPMs)—i.e., endogenous lipids termed resolvins, protectins, maresins, and lipoxins that confine the inflammatory cascades in space and time during the “resolution of inflammation”–has emerged as a crucial event in the derangement of the inflammatory homeostasis and the onset of chronic inflammation and pain. Indeed, a deviant inflammatory response that is not adequately controlled by the resolution network leads to the overproduction of pro-inflammatory eicosanoids that, opposite to SPMs, lead to neuropathic pain. Interestingly, in the last two decades convincing evidence has demonstrated that SPMs antagonize the in vivo activity of pro-inflammatory eicosanoids and, overall, exert potent anti-hyperalgesic effects in a number of pain-associated paradigms of disease, such as arthritis and chemotherapy-induced peripheral neuropathy, as well as in many experimental models of pain like mechanical allodynia, chemical pain, heat hypersensitivity and phase 1 and 2 inflammatory pain. Of note, accumulated evidence supports a synergy between SPMs and other signalling pathways, such as those mediated by transient receptor potential (TRP) channels and those triggered by opioid receptors, suggesting that the cascade of events where inflammation and pain perception take part might be ways more intricated than originally expected. Here, we aim at presenting a state-of-the-art view of SPMs, their metabolism and signalling, in the context of cellular and molecular pathways associated to neuropathic pain.


2015 ◽  
Vol 122 (6) ◽  
pp. 1338-1348 ◽  
Author(s):  
Neil M. Goldenberg ◽  
Liming Wang ◽  
Hannes Ranke ◽  
Wolfgang Liedtke ◽  
Arata Tabuchi ◽  
...  

Abstract Background: Hypoxic pulmonary vasoconstriction (HPV) is critically important in regionally heterogeneous lung diseases by directing blood toward better-oxygenated lung units, yet the molecular mechanism of HPV remains unknown. Transient receptor potential (TRP) channels are a large cation channel family that has been implicated in HPV, specifically in the pulmonary artery smooth muscle cell (PASMC) Ca2+ and contractile response to hypoxia. In this study, the authors probed the role of the TRP family member, TRPV4, in HPV. Methods: HPV was assessed by using isolated perfused mouse lungs or by intravital microscopy to directly visualize pulmonary arterioles in mice. In vitro experiments were performed in primary human PASMC. Results: The hypoxia-induced pulmonary artery pressure increase seen in wild-type mice (5.6 ± 0.6 mmHg; mean ± SEM) was attenuated both by inhibition of TRPV4 (2.8 ± 0.5 mmHg), or in lungs from TRPV4-deficient mice (Trpv4−/−) (3.4 ± 0.5 mmHg; n = 7 each). Functionally, Trpv4−/− mice displayed an exaggerated hypoxemia after regional airway occlusion (pao2 71% of baseline ± 2 vs. 85 ± 2%; n = 5). Direct visualization of pulmonary arterioles by intravital microscopy revealed a 66% reduction in HPV in Trpv4−/− mice. In human PASMC, inhibition of TRPV4 blocked the hypoxia-induced Ca2+ influx and myosin light chain phosphorylation. TRPV4 may form a heteromeric channel with TRPC6 as the two channels coimmunoprecipitate from PASMC and as there is no additive effect of TRPC and TRPV4 inhibition on Ca2+ influx in response to the agonist, 11,12-epoxyeicosatrienoic acid. Conclusion: TRPV4 plays a critical role in HPV, potentially via cooperation with TRPC6.


2019 ◽  
Author(s):  
Ruth A. Pumroy ◽  
Amrita Samanta ◽  
Yuhang Liu ◽  
Taylor E.T. Hughes ◽  
Siyuan Zhao ◽  
...  

SUMMARYTransient receptor potential vanilloid 2 (TRPV2) plays a critical role in neuronal development, cardiac function, immunity, and cancer. Cannabidiol (CBD), the non-psychotropic therapeutically active ingredient of Cannabis sativa, is a potent activator of TRPV2 and also modulates other transient receptor potential (TRP) channels. Here, we determined structures of the full-length TRPV2 channel in a CBD-bound state in detergent and in PI(4,5)P2 enriched nanodiscs by cryo-electron microscopy. CBD interacts with TRPV2 through a hydrophobic pocket located between S5 and S6 helices of adjacent subunits, which differs from known ligand and lipid binding sites in other TRP channels. Comparison between apo- and two CBD-bound TRPV2 structures reveals that the S4-S5 linker plays a critical role in channel gating upon CBD binding. The TRPV2 “vanilloid” pocket, which is critical for ligand-dependent gating in other TRPV channels, stays unoccupied by annular lipids, PI(4,5)P2, or CBD. Together these results provide a foundation to further understand TRPV channel gating properties and their divergent physiological functions and to accelerate structure-based drug design.


Cancers ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 956 ◽  
Author(s):  
Michela Bernardini ◽  
Alessia Brossa ◽  
Giorgia Chinigo ◽  
Guillaume P. Grolez ◽  
Giulia Trimaglio ◽  
...  

Background: Transient receptor potential (TRP) channels control multiple processes involved in cancer progression by modulating cell proliferation, survival, invasion and intravasation, as well as, endothelial cell (EC) biology and tumor angiogenesis. Nonetheless, a complete TRP expression signature in tumor vessels, including in prostate cancer (PCa), is still lacking. Methods: In the present study, we profiled by qPCR the expression of all TRP channels in human prostate tumor-derived ECs (TECs) in comparison with TECs from breast and renal tumors. We further functionally characterized the role of the ‘prostate-associated’ channels in proliferation, sprout formation and elongation, directed motility guiding, as well as in vitro and in vivo morphogenesis and angiogenesis. Results: We identified three ‘prostate-associated’ genes whose expression is upregulated in prostate TECs: TRPV2 as a positive modulator of TEC proliferation, TRPC3 as an endothelial PCa cell attraction factor and TRPA1 as a critical TEC angiogenic factor in vitro and in vivo. Conclusions: We provide here the full TRP signature of PCa vascularization among which three play a profound effect on EC biology. These results contribute to explain the aggressive phenotype previously observed in PTEC and provide new putative therapeutic targets.


2020 ◽  
Vol 6 (6) ◽  
pp. eaaz2736 ◽  
Author(s):  
Lu Yu ◽  
Xiaoli Zhang ◽  
Yexin Yang ◽  
Dan Li ◽  
Kaiyuan Tang ◽  
...  

Duchenne muscular dystrophy (DMD) is a devastating disease caused by mutations in dystrophin that compromise sarcolemma integrity. Currently, there is no treatment for DMD. Mutations in transient receptor potential mucolipin 1 (ML1), a lysosomal Ca2+ channel required for lysosomal exocytosis, produce a DMD-like phenotype. Here, we show that transgenic overexpression or pharmacological activation of ML1 in vivo facilitates sarcolemma repair and alleviates the dystrophic phenotypes in both skeletal and cardiac muscles of mdx mice (a mouse model of DMD). Hallmark dystrophic features of DMD, including myofiber necrosis, central nucleation, fibrosis, elevated serum creatine kinase levels, reduced muscle force, impaired motor ability, and dilated cardiomyopathies, were all ameliorated by increasing ML1 activity. ML1-dependent activation of transcription factor EB (TFEB) corrects lysosomal insufficiency to diminish muscle damage. Hence, targeting lysosomal Ca2+ channels may represent a promising approach to treat DMD and related muscle diseases.


2002 ◽  
Vol 156 (1) ◽  
pp. 29-34 ◽  
Author(s):  
Valérie Denis ◽  
Martha S. Cyert

Calcium ions, present inside all eukaryotic cells, are important second messengers in the transduction of biological signals. In mammalian cells, the release of Ca2+ from intracellular compartments is required for signaling and involves the regulated opening of ryanodine and inositol-1,4,5-trisphosphate (IP3) receptors. However, in budding yeast, no signaling pathway has been shown to involve Ca2+ release from internal stores, and no homologues of ryanodine or IP3 receptors exist in the genome. Here we show that hyperosmotic shock provokes a transient increase in cytosolic Ca2+ in vivo. Vacuolar Ca2+, which is the major intracellular Ca2+ store in yeast, is required for this response, whereas extracellular Ca2+ is not. We aimed to identify the channel responsible for this regulated vacuolar Ca2+ release. Here we report that Yvc1p, a vacuolar membrane protein with homology to transient receptor potential (TRP) channels, mediates the hyperosmolarity induced Ca2+ release. After this release, low cytosolic Ca2+ is restored and vacuolar Ca2+ is replenished through the activity of Vcx1p, a Ca2+/H+ exchanger. These studies reveal a novel mechanism of internal Ca2+ release and establish a new function for TRP channels.


Sign in / Sign up

Export Citation Format

Share Document